
HARDWARE WARRANTY

Mektronix Technology, Inc. ("Mektronix"), Mundelein, IL, warrants to the purchaser that all
products manufactured by Mektronix will be free from defects in material and workmanship
for a period of one year from the date of shipment from the factory or any authorized distrib-
utor of Mektronix. Mektronix's obligation under this warranty shall be strictly and exclusive-
ly limited to the repair or replacement, at the factory or a service center of Mektronix, of any
such equipment or parts thereof which an authorized representative of Mektronix finds to be
defective in material or workmanship under normal use. This warranty does not apply to any
equipment which has been tampered with or altered in any way, which has been improperly
installed or which has been subject to misuse, neglect or accident. There is no expressed or
implied warranty of merchantability or fitness for a particular purpose. Mektronix shall have
no liability whatsoever in any event for payment of any incidental or consequential damages,
including, without limitation, damages for injury to any person or property.

NOTICE

The information furnished in this manual by Mektronix Technology, Inc. is believed to be
accurate and reliable. However, no responsibility is assumed by Mektronix Technology, Inc.
for its use; nor any infringements of patents or other rights of third parties which may result
from its use. Mektronix Technology, Inc. reserves the right to make engineering refinements
to all products and to make changes in this manual without prior written notification. No part
of this manual may be reproduced in any form or by any means without prior written permis-
sion from Mektronix Technology, Inc.

Copyright © 1995 to 2008 by Mektronix Technology, Inc.
Printed 10/18/99

ALL RIGHTS RESERVED

LIMITED USE SOFTWARE LICENSE AGREEMENT

The terms and conditions of the Agreement will apply to the Software supplied herewith and
derivatives obtained therefrom, including any copy. The term Software includes programs
and related documentation supplied herewith. If you have executed a separate Software
Agreement covering the Software supplied herewith, such Software Agreement will govern.

1. TITLE AND LICENSE GRANT

The SOFTWARE is copyrighted and/or contains proprietary information protected by
law. All SOFTWARE, and all copies thereof, are and will remain the sole property of
Mektronix Technology, Inc. ("Mektronix"). Mektronix hereby grants you a personal,
non-transferable and non-exclusive right to use all Software, in whatever form recorded,
which is furnished to you under this Agreement. This grant is limited to use with Mek-
tronix MCP-04 boards and may not be repackaged and resold without prior approval
from Mektronix. Any other use of this Software shall automatically terminate this li-
cense.

You agree to use your best efforts to see that any user of the Software licensed hereunder
complies with the terms and conditions of this License Agreement and refrains from tak-
ing any steps, such as reverse assembly or reverse compilation, to derive a source code
equivalent of the Software.

2. SOFTWARE USE
A. You are permitted to make a single archive copy, provided the Software shall not be

otherwise reproduced, copied, or disclosed to others in whole or in part.
B. The Software together with any archived copy thereof, shall be either returned to

Mektronix or destroyed when no longer used in accordance with this license Agree-
ment.

3. LIMITED WARRANTY

A. Mektronix warrants that the Software will be in good working order and will replace,
without charge, any Software which is not in good working order if returned to the
location where you obtained it within (90) days of delivery to you.

B. Mektronix does not warrant that the functions of the Software will meet your re-
quirements or that Software operation will be error-free or uninterrupted.

C. Mektronix has used reasonable efforts to minimize defects or errors in the SOFTWARE.
HOWEVER, YOU ASSUME THE RISK OF ANY AND ALL DAMAGE OR LOSS FROM ITS

USE, OR INABILITY TO USE THE SOFTWARE.
D. YOU UNDERSTAND THAT, EXCEPT FOR THE 90 DAY LIMITED WARRANTY RECITED

ABOVE MEKTRONIX AND ITS AGENTS MAKE NO WARRANTIES, EXPRESSED OR

IMPLIED, AND SPECIFICALLY DISCLAIM ANY WARRANTY OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE.

4. EXCLUSIVE REMEDIES AND LIMITATIONS OF LIABILITIES
A. YOU AGREE THAT YOUR SOLE REMEDY AGAINST MEKTRONIX AND ITS AGENTS FOR

LOSS OR DAMAGE CAUSED BY ANY DEFECT OR FAILURE IN THE SOFTWARE
REGARDLESS OF THE FORM OF ACTION, WHETHER IN CONTRACT, TORT, INCLUDING

NEGLIGENCE, STRICT LIABILITY OR OTHERWISE, SHALL BE THE REPLACEMENT OF

MEKTRONIX FURNISHED SOFTWARE, PROVIDED SUCH SOFTWARE IS RETURNED

TO MEKTRONIX WITH A COPY OF YOUR SALES RECEIPT.
B. Regardless of any other provisions of this Agreement, neither Mektronix nor its

agents shall be liable for any indirect, incidental, or consequential damages (including
lost profits) sustained or incurred in connection with the use, operation, or inability to
use the SOFTWARE or for damages due to causes beyond the reasonable control of
Mektronix or its agents attributable to any service, products or action of any other
person.

You acknowledge that you have read this Agreement and understand it, and that by using the
Software you agree to be bound by its terms and conditions. You further agree that, except
for separate written agreements between Mektronix and you, this Agreement is the complete
and exclusive statement of the rights and liabilities of the parties. This agreement supersedes
all prior oral agreements, proposals or understandings, and any other communications be-
tween us relating to the subject matter of this Agreement.

TABLE OF CONTENTS

DESCRIPTION .. 1-1

1.1. MANUAL ORGANIZATION ... 1-3

1.2. OVERVIEW OF MCP-04 ... 1-4

1.2.1. Motion Controller Features .. 1-5

1.2.2. Motion Controller Specifications.. 1-6

INSTALLATION ... 2-1

2.1. SYSTEM REQUIREMENTS ... 2-1

2.2. SOFTWARE INSTALLATION .. 2-2

2.2.1. Distribution Software ... 2-3

2.2.2. Installing Exerciser and Library Software ... 2-3

2.3. HARDWARE INSTALLATION .. 2-4

2.3.1. Configuring the MCP-04 Board ... 2-5

2.3.2. MCP-04 Connector Pin-outs .. 2-7

2.3.3. Interface to I/O Module .. 2-9

2.3.4. Interface to External Devices ... 2-11

SYSTEM CHECKOUT ... 3-1

3.1. VERIFY COMMUNICATION .. 3-1

3.1.1 Check Board Utility .. 3-1

3.1.2 Command Exerciser Utility .. 3-2

3.2. CLOSED-LOOP CONTROL .. 3-3

3.2.1. Establishing the Control Loop .. 3-4

3.2.2. Adjusting the Digital Compensator .. 3-6

3.3. EXERCISING THE MCP-04 BOARDS... 3-7

3.3.1. Control Modes .. 3-7

3.3.2. External Inputs/Outputs Ports .. 3-11

3.3.3. External Encoder .. 3-11

3.3.4. Digital to Analog Converter ... 3-11

3.3.5. Limit .. 3-12

BOARD OPERATION .. 4-1

4.1. ADDRESS COMMUNICATIONS .. 4-1

4.1.1. Address Decoding ... 4-1

4.1.2. Register Programming .. 4-3

4.2. MOTION CONTROL SETTINGS .. 4-5

4.2.1. Digital Compensator... 4-5

4.2.2. Flag and Program Mode Registers ... 4-6

4.2.3. Emergency Flags and Status ... 4-8

4.2.4. Control Mode Operation .. 4-9

4.3. COMMUTATOR .. 4-19

4.3.1. Configuration Registers .. 4-19

4.3.2. Commutator Constraints ... 4-23

SYSTEM MODELING AND TUNING .. 5-1

5.1. MODELING THE SYSTEM COMPONENTS .. 5-2

5.1.1. Zero Order Hold Transfer Function ... 5-3

5.1.2. DAC Transfer Function .. 5-4

5.1.3. Amplifier Transfer Function ... 5-4

5.1.4. DC Motor Transfer Function .. 5-5

5.1.5. Encoder Transfer Function ... 5-7

5.2. TUNING THE DIGITAL COMPENSATION FILTER .. 5-7

5.2.1. Determination of the Gain and Phase Margin .. 5-9

5.2.2. Modification of the Open Loop Transfer Function ... 5-10

MCP-04 SOFTWARE .. 6-1

6.1. SOFTWARE OPERATION ... 6-1

6.1.1. Limiting and Rounding Conventions .. 6-2

6.1.2. Board Numbers and Global Axis Numbers ... 6-2

6.1.3. Initialization .. 6-2

6.2. MCP-04 EXERCISER ... 6-3

6.2.1. Invocation ... 6-3

6.2.2. Usage .. 6-3

6.2.3. List of Exerciser Commands ... 6-9

6.3. MCP-04 PROGRAMMING INTERFACE LIBRARIES .. 6-13

6.3.1. Programming in C .. 6-13

6.3.2. Using DLL in Windows 98 Programs ... 6-16

6.4. EXERCISER AND PROGRAMMING INTERFACE LIBRARY REFERENCE .. 6-17

 1-1

Section 1

DESCRIPTION

This manual describes the Mektronix MCP-04, 4-Axis Motion Controller and supporting
software that runs on a PC compatible computer. The MCP-04 board is a general purpose
motion controller that plugs into an ISA expansion slot of the personal computer. Multiple
MCP-04 boards may be used in a system as long as each has a unique I/O address. The
MCP-04 is a half length card that provides up to four axes of servo control, hosts three I/O
ports, four spare incremental encoder inputs and an analog output port. Each axis controller
provides all the necessary functions for closed-loop control of brush or brushless DC motors
and stepper motors with encoder feedback signals.

The MCP-04 Exerciser program and Programming Interface Library operate on any comput-
er running DOS version 3.3 or later. The MCP-04 Windows Testbed program and the Dy-
namic Link Library (DLL) is for use with the WIN/95, WIN/98 and WIN/NT operating
systems. The Testbed program combines the functionality of the DOS Check and Exercise
programs. The on-screen monitor displays the installed axis information and I/O port status
of MCP-04 boards. The automated diagnostic test allows all of the board’s registers to be
tested and verified. Tests can be run one register at a time (single-step mode) or all of the
registers can be run automatically. Tests may be also be run multiple times in a ‘burn-in’
mode.

The Exerciser allows interactive communication with the MCP-04 using the computer's
keyboard. The Exerciser is very helpful for debugging a motion control system during the
design phase of an application project. The on-screen monitor displays the installed axis
information and I/O port status of MCP-04 boards. The Programming Interface Library
routines provide source code interfacing to application programs. The application program
may be written in Visual C++, Visual BASIC™, or other programming languages.

™ Visual C++ and Visual BASIC are registered trademarks of Microsoft Corporation.

Description

 1-2

Closed-loop control provides better response characteristics and higher fault tolerance than
open-loop systems. The advantages obtained by using closed-loop control are now afforda-
ble with the Mektronix MCP-04 motion controller boards. Special features of the on-board
digital commutator can be used to your advantage in lowering the cost of the motor drivers
and increasing the performance of brushless motors. The Mektronix MCP-3A6 four axis
motor driver provides a direct digital hook-up to the MCP-04 board and is priced at less than
$100 per axis.

 1-3

Mektronix, in its commitment to providing only the finest motion control products, has used
the highest quality components and construction techniques, ensuring long-term trouble-free
operation. Surface mount components provide a small board layout and improved reliability
for embedded PC applications. All connector pins are gold plated for corrosion resistance
and special circuitry is used for reliable operation in noisy environments.

1.1. MANUAL ORGANIZATION

The MCP-04 Manual is divided into the following six sections:

 • Description
 • Installation
 • System Checkout
 • MCP-04 Board Operation
 • System Modeling and Tuning
 • MCP-04 Software

Description gives a general overview of how the MCP-04 Manual is organized and describes
the features of the system. The DC and AC electrical specifications for the MCP-04 are
given at the end of this section.

Installation deals with configuring the MCP-04 boards and installation of hardware and
software in the PC. Interfacing the MCP-04 with external equipment is described with appli-
cation examples.

System Checkout gives instructions for verifying the operation of the hardware and describes
a method for establishing closed-loop control. An experimental method for tuning the digital
compensator is given using a provided utility program.

MCP-04 Board Operation describes in detail the many capabilities of the MCP-04 motion
controller. The built in operating features are described with examples of how to use these
features in application programs.

System Modeling and Tuning describes an analytical method for tuning the digital compensa-
tor. Modeling of the system components is described so that the filter values can be esti-

Description

 1-4

mated using graphical methods for optimal control. This section may be skipped if the expe-
rimental method of tuning the controller provides acceptable performance.

MCP-04 Software is the operations guide for using the MCP-04 Exerciser program and how
to interface with the supplied library routines. Reference manual pages for each command
with descriptions and syntax are given in this section. The Programming Interface Library
and Dynamic Link Library (DLL) allows application programmers to use high level func-
tions without concern about register programming details.

1.2. OVERVIEW OF MCP-04

The MCP-04 motion controller boards provide an expandable general purpose motion control
system that utilizes a PC compatible computer as its host. The half size MCP-04 board plugs
into an ISA slot in the PC and controls four servo motors, spindle motors and external devic-
es using the MCP-R16 I/O module. Three interconnects are provided for axis motor drives,
incremental encoder inputs, and the I/O module. Sixteen 5 Amp relays and 28 user inputs are
available on the small DIN rail mounted module.

The MCP-04 uses a digital compensator to improve system response and increase the stabili-
ty of motion control systems. The provided control modes are Position Control, Proportional
Velocity Control, Trapezoidal Profile Control, and Integral Velocity Control. During each of
these modes, the digital compensator parameters may be adjusted as well as its sampling
frequency.

Position Control performs point-to-point moves with no velocity profiling. Position Control
may be used to perform unique profiling of each axis by sending new position data at the
servo update rate. Proportional Velocity Control tracks the command velocity continuous-
ly until a new command is given. The controller will return to the command velocity if the
motor has stalled and will not try to "catch-up". Trapezoidal Profile Control performs
point to point moves by profiling the velocity trajectory to a trapezoid or triangle. The con-
troller generates the necessary profile to conform to the acceleration, maximum velocity, and
final position commands. If the maximum velocity is reached before the halfway point, the
profile will be a trapezoidal, otherwise the profile will be triangular. Integral Velocity
Control performs continuous velocity profiling as specified by the command velocity and

 1-5

acceleration. After a change in command velocity, the controller will accelerate at the speci-
fied acceleration until the new command velocity has been reached.

Applications include PC robotic workstations, X-Y-Z stages, machining operations and
automated testing equipment. An optional P-CNC software application package is available
for executing NC programs conforming to EIA standard RS-274D.

1.2.1. Motion Controller Features

The MCP-04 controllers provide digital closed-loop control of brush or brushless DC motors
and stepper motors, performing all functions required for closed-loop control and eliminating
the need for an analog compensator or velocity feedback. All that is needed for a complete
servo-system is a PC with a MCP-04 installed, motor drivers, and motors with an incremental
shaft encoder. The following lists summarize the main features of the MCP-04 motion con-
trol system development package.

Hardware Features:

 • High performance closed-loop control of brush or brushless DC and stepper motors
 • Adjustable digital stabilizing filter which can achieve sampling rates up to 7.8 kHz
 • Four selectable operational control modes that perform position and velocity profiling
 • ±10 V analog output and 20 kHz PWM with sign bit command formats
 • Commutation signals with phase advance for directly driving brushless motors
 • Quadrature incremental encoder format compatible with differential line driver or

TTL outputs
 • Execution stop and limit for each axis
 • Fits into half-size ISA expansion slot
 • Expandable to as many axes required in the application system

Additional features of MCP-04
 • 28 filtered inputs, 16 high-current outputs
 • Additional 16-bit decoder for reading up to four spare external encoder inputs
 • Spare analog output port that may be used for controlling external equipment

Software Features:
 • Exerciser program provides interactive interface between user and MCP-04

Description

 1-6

 • Programming Interface Library and 32-bit DLL for developing Win32 software
applications

 • Sample utility program written in C++

 • Windows™ 32-bit DLL for Windows 95/98/NT™ and NT device driver
 • Optional P-CNC program that runs NC machine code maintaining compatibility with

EIA standard RS-274D

1.2.2. Motion Controller Specifications

The MCP-04 specifications are given for completeness and should be useful for system
developers.

™ Windows is a registered trademark of Microsoft Corporation.
™ Win95, Win98 and Windows NT are registered trademarks of Microsoft Corporation.

 1-7

PARAMETER MIN TYP MAX UNIT COMMENTS

Supply Inputs:
+5V Supply current, Icc 400 600 mA

+12V Supply current, Icc 12 50 mA
-12V Supply current, Icc 10 50 mA

Board Inputs:
Port voltage, VIN 4.5 5.5 V Filtered, 4.7k pull-ups

Limits voltage, VIN 4.4 24 V Filtered schmitt trigger
Encoder CMR, VIC ±7 V RS-422 compatible

Encoder hysteresis, VIH 120 mV

Board Outputs:
Analog drive current, IOS 20 mA Motor commands and

Analog offset , VOO 20 mV DAC outputs
PWM sink current, IOL -24 mA

PWM drive current, IOH 15 mA

PWM modulation freq 20.0 kHz

Port Clamp Voltage, VDS 45 V Outputs A,B,C

Port drive current, IN 250 mA Continuous current

Table 1-1. MCP-04 DC Characteristics

Description

 1-8

TA= 0°C to 70°C; Units = nSec

 2 MHz Clock
PARAMETER SYMBOL MIN MAX

Input pulse width; /Stop, /Limit tIP 600

Input pulse width; /Index tIX 1600

Input pulse width; CHA, CHB tIAB 1600

Input pulse width; /Sync tIS 9000

Delay CHA to CHB transition tAB 600

Input rise/fall time CHA, CHB, Index tIABR 450

Input rise/fall time; /Stop, /Limit tIR 50

Delay time, /IOR fall to /IOR fall tRC 1950

Delay time, /IOW fall to /IOW fall tWC 1830

Output pulse width, PROF, INIT,
Pulse, Sign, PHA-PHD

tOP 500

Table 1-3. MCP-04 AC Characteristics

 2-1

Section 2

INSTALLATION

This section gives details on installing and configuring the MCP-04 hardware and supporting
software. The hardware installation should be checked along the way using the Testbed
program's diagnostic capabilities to verify correct operation of external components. Section
3 details procedures for performing a system checkout once the installation is complete.

2.1. SYSTEM REQUIREMENTS

A PC compatible computer serves as the host of the system. The minimum computer confi-
guration required for the MCP-04 system is listed below.

• 1MB of memory
• one ISA expansion slot for each MCP-04 board
• a VGA compatible monitor
• DOS 3.3 or later versions
• Windows 95/98 or NT

Additional recommended options (not required):

• a 80486 µP based computer or higher
• an industrialized computer chassis
• flash disk for reliability

The following associated equipment are required to operate a motion control application.

• Motors with quadrature encoder position feedback (1 per axis)
• Motor drivers (1 per axis)
• Power supply for the motor drivers (1)
• Limit switch interface (1 per axis)
• External I/O interface (MCP-R16)

Installation

 2-2

The motors may be either the brush or brushless type and must be sized for the particular
application. The motor drivers must be suitable for driving the selected motors and must
accept one of the motor command output formats. Typically this is the ±10V analog range
command but the PWM and Commutator outputs may also be applied by knowledgeable
users. The ±10 Volt analog command signal will interface directly to the motor driver with-
out external components. Most driver manufacturers provide a differential command (veloci-
ty) input. A differential input is required so that the grounds on the MCP-04 are kept iso-
lated.

The MCP-04 board needs a 270ns I/O read/write pulse-width to operate reliably. Figure 2.1
shows the timing specifications for read and write operations. The delay between consecu-
tive I/O read/write cycles must be at least 1.5 µs. Additional timing information is given in
Table 1-3. The software supplied by Mektronix Technology, Inc. guarantees these timing
requirements are met by inserting the proper delay.

270 ns
min.

IOR/IOW (CS)

IOR (OE)

1.5 µs
min. 270 ns

min.

Figure 2.1 I/O Timing Specifications

2.2. SOFTWARE INSTALLATION

2.3.1. The distributed software must be first transferred to a hard disk or the flash disk
system of the host computer. The host computer's environment must be set to work with the
number and type of MCP-04 boards in your system. These procedures are explained in the
following sections.

 2-3

2.2.1. Distribution Software

The following directories and files are provided on the distribution disk:

UTILS DOS DOS Utilities Directory
 ex.exe Motion controller Exerciser
 mcp.hlp Data file for on-line help and manual printing
 check.exe Check utility for MCP-04
 mca.tst Check data file
 mcb.tst Check data file
 readme Additional information

DLLWIN32 DLL Directory
 SOURCE Source Code Directory
 Mcntrl32.dll MCP-04 DLL

NT DEVICE DRIVER NT Device Driver
 Installmc.bat Installs NT driver
 Instdrv.exe Driver installation utility
 Mekmcpnt.sys NT device driver

Samples WIN32 Sample Programs
 SOURCE Source code Directory
 Mcntrl32.dll MCP-04 DLL
 Simple Testbed.exe Sample Program

2.2.2. Installing Exerciser and Library Software

The exerciser and check utilities can be copied from the a: drive to the MCP-04 directory as
follows:

 XCOPY a:\utils*.* c:\mcp-04\utils

Installation

 2-4

The DLL32 subdirectory includes installation and source code files for Windows 98 and NT
Workstation. The MCNTRL32 DLL should be copied to the SYSTEM32 subdirectory of
your Windows directory (example, C:\WINDOWS\SYSTEM32).

A batch file (INSTALLMC.bat) is included that copies the MCNTRL32 DLL and the NT
device driver to the C:\WINNT40\SYSTEM32 subdirectory, and installs the device driver for
the MCP-04 motion control board. Do not run this batch file for Windows 95/98. This batch
file is for the NT operating systems only. Type the following from the command line:

 INSTALLMC <NT_root_dir>

for example,

 INSTALLMC C:\WINNT40

To ensure that this device driver is loaded on every boot, go to the Control Panel and select
Devices and change the Start Up option for the MEKMCNT from manual to automatic.

This batch file uses a utility program called INSTDRV, which can be used to remove the
device driver from your system using the “remove” command line option. For example,

INSTDRV MEKMCNT remove

2.3. HARDWARE INSTALLATION

Before the MCP-04 motion controller board is installed in the expansion slots of your IBM-
PC/AT or compatible computer, it must be configured as described in the following para-
graphs.

 2-5

Motor #1
Driver

Motor #2
Driver

Motor #3
Driver

MCP-04
Motion

Controller

Spindle
Driver

Spindle on/off
Spindle cw/ccw
Coolant on/off

Clamp on/off

Oil Shot Pulse

Option 1 on/off

24 Contact
Closure Inputs

 &
16 Relays
Outputs

Spindle

PC

Feedrate
Override

Feed Hold

Handwheel

Cycle Start

X-Axis

Y-Axis

Z-Axis

PLC
Interface

Connections

Motor #3
Driver

W-Axis

MCP-R16

E-Stop

Spdl Orient

Probe Trig

Cont/Single

Homing
Switches

Cycle Inhibit

Axis
Select

Hi/Lo Gear

4 Ext
Encoder
inputs

Handwheel
Select

Axis Limits

Option 2 on/off

Oil shot

Figure 2-2. MCP-04 System Configuration for P-CNC

2.3.1. Configuring the MCP-04 Board

The MCP-04 Four Axis Motion Control board uses the PC’s I/O addresses from 3E0 to 3EB
hexadecimal. A standard PC configuration will not conflict with this address space. If addi-

Installation

 2-6

tional I/O boards are installed, verify that they do not conflict with addresses of the MCP-04
board.

The only jumper configuration is for determining the limit switch polarity. When using the
MCP-R16 I/O module, the limits must be configured with normally closed switches. In this
way, a broken connection will always be detected. The MCP-04 board layout is given in
Figure 2-3 showing jumpers JP1, JP2, JP3, and JP4. Each jumper has a ‘+’ sign indicating a
connection to +5V. Place jumpers on the ‘+’ side when limit switches are not installed.
Jumper to the opposite side (closest to the to edge) for normal configurations using the MCP-
R16 and normally closed limit switches.

J3

JP
1

J2

J1
JP

2

JP
3

JP
4

MCP-04

FOUR AXIS MOTION CONTROLLER

Figure 2-3. MCP-04 Board Layout

Connector J1 interfaces to the motor driver modules, J2 connects to the MCP-R16 I/O mod-
ule, and J3 provides convenient break-out interconnections for axis encoders and up to four
external encoders (used for other functions such as a handwheel and spindle speed measure-
ment).

 2-7

2.3.2. MCP-04 Connector Pin-outs

The layout of the interconnect wiring should be well thought out for modularity and noise
immunity. Provided the interface connections are made in accordance with industry stan-
dards, your system will work reliably in industrial environments. The MCP-04 connector
pin-outs given in Table 2-1 are laid out for easy cable break-out to multiple connectors.

Installation

 2-8

 J1 26-Pin High Density D-Sub Connector
J1-1 Command (Axis 1) J1-10 Common (Axis 1) J1-19 PWM Pulse (Axis 1)
J1-2 PWM Sign (Axis 1) J1-11 Command (Axis 2) J1-20 Common (Axis 2)
J1-3 PWM Pulse (Axis 2) J1-12 PWM Sign (Axis 2) J1-21 Command (Axis 3)
J1-4 Common (Axis 3) J1-13 PWM Pulse (Axis 3) J1-22 PWM Sign (Axis 3)
J1-5 Command (Axis 4) J1-14 Common (Axis 4) J1-23 PWM Pulse (Axis 4)
J1-6 PWM Sign (Axis 4) J1-15 DAC Output J1-24 GND
J1-7 Enable Out (Axis 3) J1-16 Enable Out (Axis 2) J1-25 GND
J1-8 +5V Output J1-17 Enable Out (Axis 4) J1-26 Enable Out (Axis 1)
J1-9 GND J1-18 +5V Output

 J2 44-Pin High Density D-Sub Connector

J2-1 Port A Output DB0 J2-16 Port A Output DB1 J2-31 Port A Output DB2
J2-2 Port A Output DB3 J2-17 Port A Output DB4 J2-32 Port A Output DB5
J2-3 Port A Output DB6 J2-18 Port A Output DB7 J2-33 Port B Output DB0
J2-4 Port B Output DB1 J2-19 Port B Output DB2 J2-34 Port B Output DB3
J2-5 Port B Output DB4 J2-20 Port B Output DB5 J2-35 Port B Output DB6
J2-6 Port B Output DB7 J2-21 Axis 1 Limit Input J2-36 Axis 2 Limit Input
J2-7 Axis 3 Limit Input J2-22 Axis 4 Limit Input J2-37 Port A Input DB0
J2-8 Port A Input DB1 J2-23 Port A Input DB2 J2-38 Port A Input DB3
J2-9 Port A Input DB4 J2-24 Port A Input DB5 J2-39 Port A Input DB6
J2-10 Port A Input DB7 J2-25 Port B Input DB0 J2-40 Port B Input DB1
J2-11 Port B Input DB2 J2-26 Port B Input DB3 J2-41 Port B Input DB4
J2-12 Port B Input DB5 J2-27 Port B Input DB6 J2-42 Port B Input DB7
J2-13 Port C Input DB0 J2-28 Port C Input DB1 J2-43 Port C Input DB2
J2-14 Port C Input DB3 J2-29 Port C Input DB4 J2-44 Port C Input DB5
J2-15 Port C Input DB6 J2-30 Port C Input DB7

J3 50-Pin DIN Ribbon Connector

J3-1 +5V Output J3-2 Ch A (Axis 1)
J3-3 /Ch A (Axis 1) J3-4 Ch B (Axis 1)
J3-5 /Ch B (Axis 1) J3-6 /Ch I (Axis 1)
J3-7 Ch I (Axis 1) J3-8 2.6 Vref Output
J3-9 GND J3-10 +5V Output
J3-11 Ch A (Axis 2) J3-12 /Ch A (Axis 2)
J3-13 Ch B (Axis 2) J3-14 /Ch B (Axis 2)
J3-15 /Ch I (Axis 2) J3-16 Ch I (Axis 2)
J3-17 2.6 Vref Output J3-18 GND
J3-19 +5V Output J3-20 Ch A (Axis 3)
J3-21 /Ch A (Axis 3) J3-22 Ch B (Axis 3)
J3-23 /Ch B (Axis 3) J3-24 /Ch I (Axis 3)
J3-25 Ch I (Axis 3) J3-26 2.6 Vref Output
J3-27 GND J3-28 +5V Output
J3-29 Ch A (Axis 4) J3-30 /Ch A (Axis 4)
J3-31 Ch B (Axis 4) J3-32 /Ch B (Axis 4)
J3-33 /Ch I (Axis 4) J3-34 Ch I (Axis 4)
J3-35 2.6 Vref Output J3-36 GND
J3-37 +5V Output J3-38 Ch B (Ext. Encoder 1)
J3-39 Ch A (Ext. Encoder 1) J3-40 GND
J3-41 +5V Output J3-42 Ch B (Ext. Encoder 2)
J3-43 Ch A (Ext. Encoder 2) J3-44 GND
J3-45 Ch B (Ext. Encoder 3) J3-46 Ch A (Ext. Encoder 3)
J3-47 +5V Output J3-48 Ch B (Ext. Encoder 4)
J3-49 Ch A (Ext. Encoder 4) J3-50 GND

Table 2-1. P-CNC Connector Pin-Outs, MCP-04 Board

 2-9

2.3.3. Interface to I/O Module

The connector J2, on the MCP-04 board interconnects to the MCP-R16 I/O module, shown in
Figure 2-4 below, using the 44 pin high density D-Sub cable. The cable is wired pin-to-pin
from the male plug to the female receptacle. Screw terminal connections are provided for all
inputs and outputs on the I/O module. Connect 24 Vdc to the terminals marked +, -, the
negative terminal being referenced to the same ground as the PC’s power supply. The 24
Vdc supply and the 110 Vac PC power should be switched on and off at the same time. Axis
limit inputs are connected to the XYZW and ++++ terminals. The positive terminals are +24
Vdc outputs that connect to normally closed limit switches. The other side of the limit
switch connects to the appropriate X, Y, Z, or W terminal. When limit switches are installed,
JP1, JP2, JP3 and JP4 on the MCP-04 board must be configured to the ground side (opposite
the ‘+’ designator, i.e. closest to edge of PCB).

R
L1

R
L2

R
L3

R
L4

R
L5

R
L6

R
L7

R
L8

R
L9 R
L1

0

R
L1

1

R
L1

2

R
L1

3

R
L1

4

R
L1

5

R
L1

6

J1
XYZW 123456789101112131415161718192021222324

INPUTSLIMITSPWR

A2 B2C2 D2 E2F2 G2 H2 J2 K2 L2 N2M2 O2 P2I2

OUTPUTS

-+

+ + + + - -

A1 B1C1 D1 E1F1 G1 H1 J1 K1 L1 N1M1 O1 P1I1

Figure 2-4 MCP-R16 I/O Module Layout

The contact closure inputs are connected to terminals 1 through 24. The other side of a
switch is connected to the ‘-’ negative terminal (GND). The assignment of the inputs is
listed in Table 2-1. The relay outputs are routed to the terminals labeled A1/A24 to P1/P24.
The outputs are rated to 5 Amp for 24 Vdc 110 Vac resistive loads. DC loads are recom-
mended for added reliability.

The two cables coming from J1 and J2 use the color codes described in Table 2-2 below. J1
is a 26-pin connector that goes to the motor drivers and spindle controller. J2 is a 44-pin
connector that mates to the MCP-R16 I/O module. The color codes allow easier pin number
identification during installation and check-out.

Installation

 2-10

Pin No. Color Code

1 Black
2 White
3 Red
4 Green
5 Orange
6 Blue
7 White/Black
8 Red/Black
9 Green/Black

10 Orange/Black
11 Blue/Black
12 Black/White
13 Red/White
14 Green/White
15 Blue/White
16 Black/Red
17 White/Red
18 Orange/Red
19 Blue/Red
20 Red/Green
21 Orange/Green
22 Black/White/Red
23 White/Black/Red
24 Red/Black/White
25 Green/Black/White
26 Orange/Black/White
27 Blue/Black/White
28 Black/Red/Green
29 White/Red/Green
30 Red/Black/Green
31 Green/Black/Orange
32 Orange/Black/Green
33 Blue/White/Orange
34 Black/White/Orange
35 White/Red/Orange
36 Orange/White/Blue
37 White/Red/Blue
38 Black/White/Green
39 White/Black/Green
40 Red/White/Green
41 Green/White/Blue
42 Orange/Red/Green
43 Blue/Red/Green
44 Black/White/Blue

Table 2-2. Cable Color Code Chart

 2-11

2.3.4. Interface to External Devices

Connections to the MCP-R16 I/O module are shown in Figure 2-5 on the following page.
All switch inputs provide contact closures to the MCP-R16. No voltages should be sup-
plied to the inputs; they are pulled up to 5 volts internally. 24 volts must be supplied to the
+/- terminals on the MCP-R16 to operate the relay outputs. The outputs are reed relays that
can be used with AC or DC loads with 24 Vdc recommended. The load current must be held
to less than 5 amps at 120 VAC or 24 Vdc.

Installation

 2-12

+
- 24 Vdc P.S.

1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
-
21
-
22
-
23
-
24
-
X
+
Y
+
Z
+
W
+

Port A DB0

Port A DB1

Port A DB3

Port A DB2

Port A DB4

Port A DB5

Port A DB6

Port A DB7

Port B DB0

Port B DB1

Port B DB2

Port B DB3

Port B DB4

Port B DB5

Port B DB6

Port B DB7

Port C DB0

Port C DB1

Port C DB2

Port C DB3

Port C DB4

Port C DB5

Port C DB6

Port C DB7

X Limit

Y Limit

Z Limit

W Limit

MCP-R16
Input

Output
Module

A1
A2
B1
B2
C1
C2
D1
D2
E1
E2
F1
F2
G1
G2
H1
H2
I1
I2
J1
J2
K1
K2
L1
L2
M1
M2
N1
N2
O1
O2
P1
P2

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

LOAD

+24V

Port B0

Port B1

Port B2

Port B3

Port B4

Port B5

Port B6

Port B7

Port A0

Port A1

Port A2

Port A3

Port A4

Port A5

Port A6

Port A7

Figure 2-5 MCP-R16 I/O Module Layout

 2-13

Quadrature Encoder Interface

Quadrature encoder signals are handled by the 75ALS195 line receiver, which provides 120
mV internal hysteresis and a maximum common-mode voltage of ±7 volts. The MCP-04 can
be configured for TTL or differential line inputs. It is recommended that you use differential
line inputs, since they provide better noise immunity than TTL. Refer to Figure 2-7 and
configure the MCP-04 board as follows:

For TTL compatible inputs, connect jumpers in the cable connectors from the Vref line to the
complementary inputs. This will provide a good reference voltage to the complementary
inputs of the 75ALS195 now being used as a comparator. Route the Channel A and Channel
B encoder signals only to the non-complementary inputs at each DB9 connector. The Index
inputs are used for a stop signal during homing operation.

Position Encoders

The axis position encoders and the handwheel encoder must output two phase channels in
quadrature. They may have either TTL or differential line driver outputs. (The handwheel
encoder must use single line TTL encoders.) Differential transmission has the advantage of
greater immunity to noise interference than single-ended transmission. For single-ended
TTL signals jumper the 2.6 Vref output to the complementary encoder inputs inside the
connector shell.

DB-9 Pin No. Encoder Function
1 +5 Volts Out
2 /Ch A Input
3 /Ch B Input
4 Ch I Input
5 Ground
6 Ch A Input
7 Ch B Input
8 /Ch I Input
9 Vref Output

Table 2-6. DB-9 Axis Encoder Pin-outs

Installation

 2-14

DB-15 Pin No. Encoder Function
1 +5 Volts Out
2 Ch A, Hdw #1
3 +5 Volts Out
4 Ch A, Hdw #2
5 Ch B, Hdw #3
6 +5 Volts Out
7 Ch A, Spindle
8 Not Used
9 Ch B, Hdw #1
10 Ground
11 Ch B, Hdw #2
12 Ground
13 Ch A, Hdw #3
14 Ch B, Spindle
15 Ground

Table 2-7. DB-15 External Encoder Connections

The shaft encoder signal is typically produced by an optical or Hall-effect encoder in quadra-
ture format. In this format, Channel A and Channel B square waves are offset by 90 degrees,
making it possible to determine direction and to increase the resolution by a factor of four.
For example, a 1000-line encoder produces 4000 counts per revolution. The required resolu-
tion and accuracy of the encoder will depend on the accuracy of your machine. The MCP-04
board can position to ±1 count of the encoder. Check the mechanical configuration and the
accuracy specifications of the shaft encoder. Select an encoder resolution that exceeds the
desired accuracy of your machine. A good rule of thumb is to select an encoder resolution
about 10 times the mechanical accuracy. Another way to select the motor encoder is to set
the maximum rapid speed to give 127,000 quadrature encoder counts per second at the se-
lected servo update rate. This will give the best resolution possible for the position feedback.

 2-15

The handwheel encoder is typically 100 pulses or 400 quadrature counts per revolution. A
detent handwheel will also provide precise positioning. The handwheel is connected to one
of the spare encoder inputs on the DB-9 connector.

Motors and Drivers

The following motors and associated equipment are required to drive the axes:

 • Motors with incremental position encoders
 • Motor drivers with power supply
 • Power supply for the motor drivers
 • Optional spindle motor with velocity feedback amplifier.

The motor drivers must be suitable for driving the selected motors. A current mode (torque)
or velocity mode motor driver may be used. It is also possible to use a velocity mode drive
by connecting the velocity feedback (tachometer) directly to the motor driver. The driver
may use either of the command output formats from the MCP-04 boards; ±10V analog or
pulse-width-modulation (PWM). The ±10V command signal will interface directly to the
motor driver without external components. Most driver manufacturers provide a differential
command input. Connect the differential HI input to the analog ±10V command line at
connector J1 and the differential LO input to the common at the same connector. The ±10V
command output can source up to 50 mA, allowing the use of cable lengths up to about 25
feet (using 24 AWG stranded wire) provided the input impedance to the motor driver is
greater than 10 kΩ and the cable capacitance is less than 300 pF.

The power supply must meet the specification requirements of the motor drivers. An isola-
tion transformer is used to provide a 110 Vac single phase to the power supply rectifier
bridge. The resulting bus voltage is around 155 Vdc and must never exceed 180 Vdc when
using the Mektronix DR-10A20 and 15A30 motor drivers. Three signal lines are used to
connect to the Mektronix motor drivers; the ±10V command and common and the drive
enable signal. The drive enable signal is a TTL output that is low (ground) when disabling
the drives. This signal keeps the drives in their correct state during power on and off condi-
tions. Otherwise, it is likely that the axes will move under these conditions. Figure 2-8
below shows the typical connections for the drivers supplied by Mektronix.

Installation

 2-16

110 Vac
18 A

T1
X1

X2

H

N

G

FAN POWER
120 Vac
50/60 Hz

POWER SUPPLY
and

DRIVER CHASSIS

External Transformer:
2 kVA rating typical

S1, S2 ON

J2-4

J2-5

J2-11

REF -

REF +

ENABLE

MOTOR +

MOTOR -

J1-1

J1-2

MCP-04

J1

MOTOR DIVER

NOTE: Set Ref Gain fully CW, set Loop Gain fully CCW

Command

Common

Enable

CASE

Figure 2-8. Mektronix Motor Driver Configuration

Digital to Analog Converter

An 8-bit digital to analog converter is provided that outputs either the factory preset 0 -10 V
range or alternatively a ±10 V range when configured correctly. The analog output can be
used with a voltage controlled device such as a spindle drive. In this case, the analog output
voltage is reference to a spindle speed.

Axis Limit Inputs

When a Limit is triggered, the controller automatically goes into Initialize mode and outputs
zero command voltage to the motor drivers. In order to clear the emergency flag, the limit
condition must be removed. The MCP-04 has the capability to override the limit condition.

 2-17

There is one limit input provided for each axis which should be triggered at both ends of
travel for safety using a N.C. switch. The MCP-04 Limit inputs must be asserted for at least
1 μsec in order to trigger.

Cable Preparation

There are three input/output receptacles on the MCP-04 board, designated J1, J2, and J3.
The functions of the receptacles are:

J1: provides outputs to motor drivers and spindle drives

J2: connects to the MCP-R16 I/O module

J3: flat ribbon cables expands to four DB9 connectors for each position encoder input
and a DB15 for the spare encoder inputs.

The cable end of J1 that connects to the motor drivers must be assembled. The shield of the
cable is tied to the connector shell at the DB26 connector. Leave the other end of the shield
unconnected. Cables for J2 and J3 are supplied complete. The DB9 encoder connectors are
often assembled onto blank PC card brackets for easy access at the rear of the computer
chassis.

External Inputs/Outputs

The output ports are 5 volt compatible and can supply up to 250 mA of current and should be
able to drive long cable lengths. The outputs may be interfaced directly to the MCP-R16 I/O
module which contains 5 Amp dry contact relays. The relays are suitable for both AC and
DC currents. The input ports are all contact closure to ground and feature filtered, schmitt
trigger inputs. There are 24 contact closure inputs and 16 high-current outputs available
from connector J2 on the MCP-04 board. Four additional inputs are reserved from Limit
inputs. The I/O module uses 24 Vdc relays and require that voltage to be supplied to the
power terminals on the MCP-R16 I/O module.

Installation

 2-18

Homing Inputs

Homing inputs for each axis can be assigned to any port that is configured as an input. The
homing switches provide the control direction while performing a homing sequence. The
homing sequence consists of the following two stages:

1) the axis moves in the direction specified by the control bit (0 = positive and 1 =
negative) with given specified velocity and acceleration. The first stage ends as
soon as the control bit changes state.

2) the axis then moves in the opposite direction at one fifth the previous speed and
stops when the control bit changes state again.

3) The axis then looks for the encoder index pulse and stops immediately. At the
end of stage three the actual position is set to zero.

The homing operation is performed using the Homing command in the Exerciser or interface
library. If power is lost and then reapplied, the current position will be defined as zero. It is
recommended that the zero (homing position) be near the center of the work area. When
mounting the homing switch in the center area it is important to remember to use the switch
to inform the controller of the correct direction for homing. This may be accomplished by
using a hall-effect sensor and a metal ridge that spans to the homing location. Figure 2-9
illustrates this concept.

AXIS MOVEMENT

Homing
Detector

Defines homing
direction

Figure 2-9. Homing Implementation

 2-19

Limit Inputs

The Limit disables the output motor command and initializes the axis. To trigger the Limit
you must open the contact closure from ground for at least 600 ns. The Limit should be used
at both ends of travel in the system for safety. There is only one Limit input for each axis;
the user must connect the left and right normally closed limit switches in series to logically
OR the two Limits.

The controller continues to keep tract of the actual position during a Limit condition. This
fact may be used to distinguish which trigger occurred. To get out of a limit condition, the
control provides a "Limit Override" that must be used to allow jogging the effected axis off
of a Limit.

 3-1

Section 3

SYSTEM CHECKOUT

This section gives guidelines for establishing a control loop and manually exercising the
MCP-04 boards to verify correct operation. The user will become familiar with the com-
mand structure and features of the MCP-04 Motion Controllers by following these instruc-
tions. Once the basic operation is well understood, the user can proceed with the advanced
concepts discussed in the remaining sections of this manual.

3.1. VERIFY COMMUNICATION

3.1.1 Check Board Utility

The Check program is used to verify that the MCP-04 board is working properly and that the
communication to and from the PC is reliable. IMPORTANT: Disable the motor drives
before operating this utility, otherwise, the axis motors will move during the test. Follow the
following procedure to verify that the MCP-04 board is working correctly. Four axis boards
will need the MCINIT environment set to “4:3E0;” either in the AUTOEXE.BAT or from the
command line. Type in the following command:

 set MCINIT=4:3E0;

Change to the directory where ‘check.exe’ is installed. Run ‘check.exe’ from this directory.
The program first comes up with a screen that detects the assignment and the number of axes
detected. The number of axes defaults to four but can be configured for more using a DOS
variable called MCINIT. Type ‘y’ to accept and continue with the program.

From the main menu of Check, type ‘1’ to enter the Diagnostic tests. The first axis to test is
axis one. Type ‘a’ to automatically test all the board registers for the axis. All the register
names should change from lower case to upper case. If any register blinks then an error was
detected. The “status” register will give an error if a limit or stop condition is detected. Type

System Checkout

 3-2

‘n’ to go on to the next axis. Repeat the same procedure for all the installed axes and return
to the main menu. Type ‘0’ to return to the DOS prompt.

If you feel like performing a more stringent test, select ‘2’ to run the Burn-in test. The test
will run the same but 100 times longer. You should notice when the test reaches the “status”
the count will decrement down from 100 at a periodic rate. If the count does not decrement
to zero an error was detected. Return to the main menu and type ‘0’ to get back to the DOS
prompt.

3.1.2 Command Exerciser Utility

After installation of the hardware and software is complete, the system communication using
the Exerciser should be established. A complete discussion of using the Exerciser is given in
Section 6 of this manual. The user is encouraged to reference Section 6 as required to obtain
more detailed operational instructions than what is given in this section.

Turn on the computer that has an MCP-04 board installed and change to the directory which
contains the Exerciser and MCINIT.BAT file. The user input is given in bold lettering.

 C:> cd\mcp\utils
 C:\MCP\utils>

Next, before running the Exerciser program it is necessary to run MCINIT unless only one
MCP-04 is being used and its starting address is set to the factory preset address of 3E0H.
Type "ex" after establishing the proper DOS environment:

 C:\MCP\utils>
 MCP Series Board Exerciser (Version 2.01)
 Copyright (c) 1987-1998 by Mektronix Technology, Inc.
 .

At this point the Exerciser is waiting to receive commands issued from the keyboard. To
establish communication with the board an easy test is to read and write from a register of an
axis. The 'gain' register will be used for this purpose in the example given below.

. ?gain check gain axis 1

 3-3

16.00
. gain = 12 set axis 1 gain to 12
12.00
. ?gain read new value of gain
12.00
. axis = 2 select axis 2 communication
axis 2 selected
. ?gain check gain axis 2
16.00
. gain = 12 set axis 2 gain to 12
12.00
. ?gain read new value of gain
12.00

A series of commands that randomly check reading and writing to the controller can be
stored in a text file and executed with the Exerciser program by typing

 . execute filename

It is also possible for the user to automate this procedure by writing a simple program that
issues a new value to a register and then reads it back to verify the register was set to the
correct value. Refer to Section 6 on how to use the library commands with a high level
programming language such as 'C'. If communication can not be established, check that
MCINIT has been called and properly set to the correct starting address. From the DOS
prompt type ‘SET’ to see the current environment settings.

3.2. CLOSED-LOOP CONTROL

This section describes how to close the control loop around a servo motor and how to adjust
the digital compensator using an experimental method. A general procedure for establishing
the proper feedback polarity is also given.

System Checkout

 3-4

3.2.1. Establishing the Control Loop

The control loop may be closed after assembling all the necessary components in the control
system. Make cables as per instructions given in Section 2 to interface the motor drivers and
the incremental quadrature encoders to the MCP-04 boards. Connect these cables to the
appropriate places when power is off. Disconnect the motor shafts from any mechanical
transmission so that they are free to turn continuously. The control loop is closed when the
position feedback is present from the quadrature encoders. Follow the procedure given
below to verify that the control loop is functional.

Step 1. During installation make sure power is off to all equipment and then turn the

power on to only the personal computer. Turn power on the motor drivers and ad-
just out any amplifier input offset so that the motors remain stationary.

Step 2. Run the Exerciser and turn the monitor on by typing:

 . ex
 . monitor on

The monitor screen will display information on all axes configured in the DOS
environment variable. At this point all axes should be in "INIT" mode and the
status should display E0H.

Step 3. Turn the motors/encoders with your hand and verify that all the position encoders

are working by watching the "act_pos" change on the display.

Step 4. To establish the correct polarity for closed-loop control, output a small positive

voltage command to the motor drivers by issuing either

. motor_com = 83
83 (or)
. pwm_com = 3
3

depending on which command output format is being used. If the motor does not
turn you should increase the output command slightly. The motor should turn in

 3-5

the positive direction. Verify this by observing the "act_pos" display increasing
in value. If the actual position is decreasing in value, then the encoder CHA and
CHB inputs need to be reversed.

Step 5. The final step is to begin servoing the motor by entering position control mode.

There are four parameters that can be varied for each digital compensator; the
Gain, Pole, Zero, and Sample Frequency. Next, before closing the control loop,
set the filter Gain to a minimal value and the Zero to a large value for each axis.

. gain = 2
2.0
. zero = .95
0.94921875

Now the position loop may be closed typing the following from the Exerciser.

. cm
control mode entered: (axis 1)

 CAUTION
There is the possibility that the position feedback is positive which could
cause the motor to run away when closing the control loop. Make sure that if
this condition does exist that it will not cause any damage.

At this point there are the two possibilities:

I. The motor runs away after any small disturbance and continues to turn at full speed.

This indicates that the position feedback is positive and should be reversed. This
condition is easily corrected by switching the Phase A and the Phase B encoder out-
puts.

II. The motor remains in the same position even after a disturbance. If you turn the

motor shaft and let go, the motor will return to the same position. This indicates that
the control loop has negative position feedback, as required.

System Checkout

 3-6

At this point the control loop gain is very low and the motor will have little restoring torque.
Gradually increase the gain by repeatedly commanding the Gain register to a higher value.
Send the Exerciser command:

. gain = <N>

where N is the decimal value of gain.

If the motor begins to vibrate, reduce the gain slightly. The default value for gain is 16
decimal when the controller is first powered or issued a software reset.

3.2.2. Adjusting the Digital Compensator

An experimental method of tuning the digital compensator provides an alternative to the
analytical approach given in Section 5 and may provide a benchmark for comparison. Spe-
cial circuitry on the MCP-04 is provided to assist in tuning the digital compensation filter.
The method is based on repeatedly stepping the motor and load in a back and forth motion
using the Exerciser utility 'tune_filter'. Reference the Exerciser reference page in Section 6.4
for instructions on using this command. The step distance should be small so the command
output signal remains in the linear range.

While the motor is stepping back and forth, the filter parameters Gain, Pole, and Zero can be
changed for the best response. The pole term (POLE) does not significantly effect the system
response unless the system has a high frequency resonance. Initially leave POLE to the
default value. Start with a low gain, (GAIN < 10), and a low frequency zero, (ZERO = .95).
Increase the gain until the motor begins to oscillate and then reduce GAIN to a safe margin.
Observe the step response on the oscilloscope. Adjust the value of ZERO, and GAIN if
necessary, by trail and error, until the desired step response has been achieved. The POLE
term may now be adjusted to see if a larger value has any beneficial effects. Finally, the
SAMPLE_FREQ may be adjusted to change the frequency response of the control system.
The default sample frequency (1923 Hz) should provide more than enough bandwidth for
most motion control systems. The sample frequency should be kept to within the 7.8 kHz
rate because this is the highest frequency that can be used during profile modes.

A typical criteria for the step response is to achieve about a 30 percent overshoot of the step
commanded position. The system accuracy will be effected by the system gain or stiffness.

 3-7

For high accuracy systems it is desirable to have high loop gains so that any friction in the
system will be overcome by the controller. The position error display of the Exerciser moni-
tor will give an indication of the system tracking and positioning deadband.

3.3. EXERCISING THE MCP-04 BOARDS

Simple operating procedures can be issued from the Exerciser that demonstrate the operating
modes of the MCP-04 board. The user is referred to Section 6 for a more detailed description
on using the Exerciser. Start the Exerciser and follow the procedures given below.

3.3.1. Control Modes

The four control modes; Position Control, Proportional Velocity Control, Integral Velocity
Control, and Trapezoidal Profile Control, provide the operating features of the MCP-04
Motion Controller boards. The following tutorial instructions show how these four control
modes operate. The instructions are not repeated for each axis since the procedure is iden-
tical.

The default mode upon applying power to the MCP-04 board is Initialize (Init) mode. While
in this mode the user should program all the necessary registers before executing a control
mode. Motor command outputs can be issued while in the Initialize mode to check for cor-
rect open-loop operation. The following procedure tests the analog and PWM output pins
and should be performed while the motor drivers are turned off, or the motors are free to turn
continuously.

. init put in Initialize mode
initialize mode: (axis 1)
. motor_com = ff outputs 10 volts to the command pin
FFH
. motor_com = 0 outputs -10 volts to the command pin
00H
. motor_com = 80 outputs 0 volts to the command pin
80H
. pwm_com = 50 50% duty cycle to PWM pulse pin and
50 a low level to PWM sign pin

System Checkout

 3-8

. pwm_com = -50 50% duty cycle to PWM pulse pin and
-50 a high level to PWM sign pin

The user should set all compensation parameters prior to entering a control mode. All con-
trol modes use some part of the digital compensator which must be set to the values deter-
mined in Section 3.2.

 . gain = N
 . zero = N
 . pole = N
 . sample_freq = N

Where N is user selectable. Once the digital compensator parameters are set, Position Con-
trol mode may be entered. Put each axis in Initialize mode and turn power on to the motor
drivers.

Position Control Mode

Position Control mode servos on the current commanded position so that the controller tries
to maintain zero error between the 'com_pos' and 'act_pos' registers. When entering from
Initialize mode the command position is set to the actual position. The following gives an
example of how to command a step position change to the controller.

 . init enter Initialize mode
 initialize mode: (axis 1)
 . act_pos = 0 specify current position as zero
 0

. enter_ctl_mode enter Position Control
 control mode entered: (axis 1)

. ?act_pos find current position
 0

. com_pos=200 move 200 counts as fast as possible
 200

. ?act_pos check new position
 200

 3-9

All the other control modes are executed from Position Control mode. The provided soft-
ware does not allow any of these modes to be executed directly from Initialize mode.

Proportional Velocity Control Mode

Proportional Velocity Control mode uses only the Gain factor of the digital compensation
filter. The velocity is programmed using the Exerciser command 'prop_vel'. To execute
Proportional Velocity Control mode try the following:

 . enter_ctl_mode enter control mode
 control mode entered: (axis 1)
 . prop_vel = 10 set velocity command
 10.0000
 . go_pv_ctl start Proportional Velocity Control
 proportional velocity control: (axis 1)
 . ?act_vel get current velocity
 10
 . prop_vel=0 stop motor
 0.0000

Integral Velocity Control Mode

Integral Velocity Control mode uses all the parameters of the digital compensator filter when
computing the motor command. The command acceleration and velocity must be set in this
mode so that the motor profiles in velocity and accelerates to the new commanded velocity.
The example given below demonstrates the basic features of this control mode.

 . enter_ctl_mode enter control mode
 control mode entered: (axis 1)
 . accel = .01 set a small acceleration
 .01171875
 . int_vel = -10 set command velocity in (-) direction
 -10
 . go_iv_ctl start Integral Velocity Control
 integral velocity control: (axis 1)

System Checkout

 3-10

 . int_vel = 10 decelerate to (+) velocity direction
 10
 . int_vel = 0 decelerate to stop
 0

Trapezoidal Profile Control Mode

Trapezoidal Profile Control is used to profile to a final position at a specified velocity. The
motion profile uses the acceleration register to ramp up to the commanded maximum veloc-
ity and to ramp down to the final position. Use the example below to initiate a velocity
profile that looks like a trapezoid.

 . init enter Initialize mode
 initialize mode: (axis 1)
 . act_pos = 0 specify current position as zero
 0
 . enter_ctl_mode positions control mode entered
 control mode entered: (axis 1)
 . accel = .02 specify a small acceleration
 0.01953125
 . max_vel = 10 command maximum velocity
 10
 . final_pos = 200000 final position set to +200,000 counts
 200000
 . go_tp_ctl execute Trapezoidal Profile Control
 trapezoidal profile control: (axis 1)
 . ?status check status (profile flag set)
 D0H repeat until motion complete
 . ?status trajectory complete (position control)
 C0H
 . ?act_pos get actual position
 200000

 3-11

3.3.2. External Inputs/Outputs Ports

There are three input ports A, B, and C and two output ports A and B on the MCP-04 board.
Ports can be read or written to as shown below.

 . port_c = 5 output 5H to Port C
 05H
 . ?port b read in 8-bit value from Port B
 00H
 . ?port a read in 8-bit value from Port A
 00H

3.3.3. External Encoder

It is also possible to read in an additional quadrature encoder besides the Axes 1 through 4
encoders on the MCP-04 board using the Ext A and Ext B inputs at connector J3.

 . ?e1 read external encoder number 1
 200445
 . e1 = 0 clear external encoder number 1 count
 0
 . ?e2 read external encoder number 2
 0

3.3.4. Digital to Analog Converter

The External DAC outputs a voltage to connector J1 on the MCP-04 board. The DAC output
is normally configured for ±10 volt operation where 80H corresponds to 0 volts. To send a
8-bit hexadecimal number to the DAC use the following commands.

 . ext_dac = 80 set external DAC to 0 volts
 80H
 . ext_dac = FF set external DAC to +10 volts
 FFH
 . ext_dac = 0 set external DAC to -10 volts

System Checkout

 3-12

 00H

3.3.5. Limit

The Limit inputs can be tested by connecting external switches as previously described. The
following procedure can be used to verify proper operation.

 . enter_ctl_mode enter position control mode
 . control mode entered: (axis 1)
 . echo long set echo format to long
 . ?status get current status

 status = E0H: no limit
 no stop
 not in initialize mode
 not in trapezoidal profile
 commutator count quadrature
 commutator 3-phase
 pwm sign reversal off

 . accel = .01 set acceleration
 command acceleration (axis 1): 0.01171875
 . int_vel = 20 set integral velocity
 command integral velocity (axis 1): 20
 . go_iv_ctl begin velocity profiling
 integral velocity control: (axis 1)

The stop is triggered by the index pulse of the position encoders. For this to happen, the
signals must be enabled using Port C configuration output port. Manually set the Port C
output so that bit 2 is low. The motor should stop at the next index pulse.

 3-13

 . ?status

 status = E0H: no limit
 stop triggered
 not in initialize mode
 not in trapezoidal profile
 commutator count quadrature
 commutator 3-phase
 pwm sign reversal off

 . clr_emergency clear emergency flags
 emergency flags of axis 1 cleared
 . int_vel = -20 set integral velocity
 command integral velocity (axis 1): -20
 . go_iv_ctl begin velocity profiling
 integral velocity control: (axis 1)

While the axis is profiling in Integral Velocity Control mode, trigger the corresponding Limit
input. The axis should immediately be disabled while the axis enters Initialize mode. Re-
lease the Limit input and continue with the procedure.

 . ?status get current status

 status = E0H: limit triggered
 no stop
 in initialize mode
 not in trapezoidal profile
 commutator count quadrature
 commutator 3-phase
 pwm sign reversal off

 . clr_emergency clear emergency flags
 emergency flags of axis 1 cleared
 . enter_ctl_mode enter position control mode
 . control mode entered: (axis 1)
 . echo short set echo format to short

 4-1

Section 4

BOARD OPERATION

This section describes how the MCP-04 motion control board operates. The details of the
operation is transparent to users of the MCP-04 Language Interface Libraries and Exerciser.
However, some users may wish to add special functions and will need to understand how to
interface to the MCP-04 motion controller boards.

4.1. ADDRESS COMMUNICATIONS

The communication to and from the MCP-04 uses the 8-bit parallel I/O bus provided on the
personal computer. The I/O base address is programmable so that multiple boards are al-
lowed in the same system. Once the programming environment has been set for the the
number and types of motion controller boards installed, the Exerciser and Programming
Interface Library provide a transparent interface for communication to the MCP-04 motion
controller boards.

4.1.1. Address Decoding

The PC communicates with the MCP-04 using I/O addressable registers. These registers
contain command and configuration information necessary to properly operate the board.
The board uses I/O address space from 3E0 to 3EB.

MCP-04 Board Operation

 4-2

 A3 A2 A1 A0 Functional Description
 0 0 0 0 Select Axis 1
 0 0 0 1 Output Enable Axis 1
 0 0 1 0 Select Axis 2
 0 0 1 1 Output Enable Axis 2
 0 1 0 0 Select Axis 3
 0 1 0 1 Output Enable Axis 3
 0 1 1 0 Select Axis 4
 0 1 1 1 Output Enable Axis 4
 1 0 0 0 Port A Rd/Wr
 1 0 0 1 Port B Rd/Wr
 1 0 1 0 Port C Rd/Wr
 1 0 1 1 Port D Rd/Wr

Table 4-1. MCP-04 Board Select Addressing

When sending a command to an axis you write to address Select Axis. However, to read
from a motor controller you must issue two I/O read operations. First to the Select Axis and
then to the Output Enable Axis to receive valid data. The AC timing specifications given in
Table 1-3 must be met. Port C outputs are used for internal configuration as shown below in
Table 4-2.

 Port C Bit Functional Description
 0 Sync
 1 Limit Override
 2 Home Enable (Index to Stop)
 3 External Encoder Select
 4 External Encoder Clear
 5 External Encoder DB0
 6 External Encoder DB1
 7 Not Used

Table 4-2. Port C Internal Decoding

 4-3

4.1.2. Register Programming

A15 through A10 make up the Register Base Address for each motion controller register. A9
through A0 make up the Starting Board Address and is mapped into the PC's I/O address
space. For example, say you want to write 00H to the Program Mode register. The MCP-04
factory preset starting address is 3E0H and the Register Base Address is 1400H for the Pro-
gram Mode register. In order to find the correct address for writing to Axis 2, you would add
1400H + 3E0H + 02H = 17E2H. Writing 00H to the Program Mode register performs a
software reset in the motor controller. Table 4-5 shows all the registers and their control
functions.

MCP-04 Board Operation

 4-4

Register
Base Addr

Function

Mode Used

Data Type

User
Access

0 0 0 0 H Flag Register All --------- rd/wr
1 4 0 0 H Program Mode Register All scalar wr
1 C 0 0 H Status Register All --------- rd/wr [1]
2 0 0 0 H 8-bit Motor Command Port All 2's compl.+0H rd/wr
2 4 0 0 H PWM Motor Command Port All 2's compl. rd/wr
3 0 0 0 H Command Position (MSB) Position Control 2's compl. rd/wr [2]
3 4 0 0 H Command Position Position Control 2's compl. rd/wr [2]
3 8 0 0 H Command Position (LSB) Position Control 2's compl. rd/wr [2]
3 C 0 0 H Sample Timer All scalar wr
4 8 0 0 H Actual Position (MSB) All 2's compl. rd [3]
4 C 0 0 H Actual Position All 2's compl. rd [3]/wr[4]
5 0 0 0 H Actual Position (LSB) All 2's compl. rd [3]
5 4 0 0 H Actual Position [MSB] All 2's compl. wr [2]
5 8 0 0 H Actual Position All 2's compl. wr [2]
5 C 0 0 H Actual Position [LSB] All 2's compl. wr [2]
6 0 0 0 H Commutator Ring All scalar [5] rd/wr [6]
6 4 0 0 H Commutator Velocity Timer All scalar wr
6 8 0 0 H X All scalar [5] rd/wr
6 C 0 0 H Y Phase Overlap All scalar [5] rd/wr
7 0 0 0 H Offset All 2's compl. rd/wr [6]
7 C 0 0 H Maximum Phase Advance All scalar [5] rd/wr [6]
8 0 0 0 H Filter Zero, A All except Prop Vel scalar rd/wr
8 4 0 0 H Filter Pole, B All except Prop Vel scalar rd/wr
8 8 0 0 H Gain, K All scalar rd/wr
8 C 0 0 H Command Velocity (LSB) Proportional Velocity 2's compl. rd/wr
9 0 0 0 H Command Velocity (MSB) Proportional Velocity 2's compl. rd/wr
9 8 0 0 H Acceleration (LSB) Int Vel and Trap Profile scalar rd/wr
9 C 0 0 H Acceleration (MSB) Int Vel and Trap Profile scalar [5] rd/wr
A 0 0 0 H Maximum Velocity Trapezoidal Profile scalar [5] rd/wr
A 4 0 0 H Final Position (LSB) Trapezoidal Profile 2's compl. rd/wr
A 8 0 0 H Final Position Trapezoidal Profile 2's compl. rd/wr
A C 0 0 H Final Position (MSB) Trapezoidal Profile 2's compl. rd/wr
D 0 0 0 H Actual Velocity (LSB) Proportional Velocity 2's compl. rd
D 4 0 0 H Actual Velocity (MSB) Proportional Velocity 2's compl. rd
F 0 0 0 H Command Velocity Integral Velocity 2's compl. rd/wr

NOTES:
1. Upper 4 bits are read only.
2. Writing to (LSB) latches all 24 bits.
3. Reading (LSB) latches data into all 24 bits.
4. Writing to middle 8-bits clears Actual Position Counter to zero.
5. The scalar limited to positive numbers (00H to 7FH).
6. The commutator registers have further limits which are discussed in the Commutator section

Table 4-5. Register Reference Table.

 4-5

4.2. MOTION CONTROL SETTINGS

The operation of each axis is based on the Hewlett Packard HCTL-1100 and is restricted to
its capabilities. This section describes its operational characteristics and controllable parame-
ters.

4.2.1. Digital Compensator

All control modes use some part of the programmable digital filter D(z) to compensate for
closed-loop system stability. In terms of the Exerciser and Programming Interface Library,
the compensation D(z) has the form:

 D(z) = GAIN
(z - ZERO)
(z + POLE) (4-1a)

In terms of the HCTL-1100's registers the compensation D(z) has the form:

 D(z) =
K
4

(z -
A

256)

(z +
B

256)
 (4-1b)

where:
 z = the digital domain operator
 K = Gain
 A = Zero
 B = Pole

The compensator is a first order lead filter which in combination with the sample timer T
(R3C00H) affects the dynamic response and stability of the control system. The sample
timer T determines the rate at which the control algorithm is executed. All the filter parame-
ters, K, A, B, and T, can be changed at any time.

The contents of the Sample Timer register sets the sampling period of the HCTL-1100. The
sampling period can be calculated using the following equation:

 T = 16 (R3C00H + 1) (1/board clock frequency) (4-2)

MCP-04 Board Operation

 4-6

The sample timer has a limit on the minimum allowable sample time depending on the con-
trol mode being executed. The limits are given below:

 Minimum Value
 R3C00H
 Position Control 7
 Proportional Velocity Control 7
 Trapezoidal Profile Control 15
 Integral Velocity Control 15

The maximum value of R3C00H is FFH (255D). So the sample time can be varied from 64
µsec to 2048 µsec using the default 2 Mhz board clock frequency. The fastest sampling rate
possible for Trapezoidal Profile Control is 7.8 kHz. The default value (64D) in the sample
timer register should provide enough bandwidth for most applications.

The sample timer effects the compensation by adding phase lag to the control system. So,
the complete compensation can be thought of as a lead-lag compensator. More phase lag is
added by increasing the value in the sample timer register. A fast sampling rate will provide
less quantization errors and faster response but may also cause high frequency oscillations. It
is typically recommended that the sampling rate be at least ten times the mechanical band-
width of the system. When synchronizing multiple axes, the sampling rate should be kept
below 2 kHz in order to have enough processing time between samples.

4.2.2. Flag and Program Mode Registers

Flag Register

The Flag register contains flags F0 through F5. Each flag is set or cleared by writing to
R0000H. The upper four bits are ignored while the lower three bits specify the flag address
and the fourth bit specifies whether to set (bit=1) or clear (bit=0) the specified flag.

Bit Number: 7-4 3 2 1 0
Function: x set/clea

r
D2 D1 D0

 4-7

F0 - Trapezoidal Profile Flag: set by the user to execute trapezoidal profile control.
The flag is reset by the controller when the final position move is completed. If the
motor can not keep up with the position commands the motor may still be moving af-
ter the F0 flag has reset. The status of F0 can be visually monitored by watching the
green Profile LED. It may also be monitored at J1 and in bit 4 of the Status register.

F1 - Initialize Flag: set or cleared to indicate controller is in Initialize mode. The
status of F1 can be visually monitored by watching the yellow Init LED. It may also
be monitored at J1 and in bit 5 of the Status register. The user should never attempt
to set or clear F1.

F2 - Unipolar Flag: set/cleared by the user to specify bipolar (clear) or unipolar (set)
mode for the Motor Command Port. When commutating brushless motors, the direc-
tion of the motor rotation is governed by the order of firing of the motor phases which
is under commutator phase control. In this case, the Unipolar mode can also be used
to restrict the DAC output from 0 to 10 volts only.

F3 - Proportional Velocity Control Flag: set by the user to specify proportional ve-
locity control.

F4 - Hold Commutator Flag: set/cleared by the user or automatically by the align
mode. When set, this flag inhibits the internal commutator counters to allow open-
loop stepping of a motor by using the commutator. Note that this feature is not in-
tended to be used for controlling an open-loop stepper motor.

F5 - Integral Velocity Control: set by user to specify integral velocity control.

Reading the Flag register returns the status of the flags. Bit 0 to 5 contain the respective data
of the flag status. For example, if Bit 0 is set (logic 1), then flag F0 is set. If bits 0 and 5 are
set, then both flags F0 and F5 are set.

Program Mode Register

The Program Mode register, which is a write only register, executes the pre-programmed
functions of the HCTL-1100. The Program Mode register is used along with the control

MCP-04 Board Operation

 4-8

flags F0, F3, and F5 in the Flag register to change control modes. The user can write any of
the following four commands to the Program Mode register.

00H - Software Reset
01H - Initialize Mode
02H - Align Mode
03H - Control Mode: flags F0, F3, and F5 in the Flag register specify which

control mode will be executed.

The commands written to the Program Mode register are discussed later in more detail in
Section 4.2.3.

Control flags F0, F3, and F5 in the Flag register determine which of the four control modes is
executed. Only one control flag can be set at a time. After one of these control flags is set,
the control modes are entered either automatically from Align or from the Initialize mode by
writing 03H to the Program Mode register.

4.2.3. Emergency Flags and Status

The Stop and Limit inputs trigger hardware flags that signify the occurrence of an emergency
condition and cause immediate change in the status of the effected axis. The Stop flag af-
fects the axis only while in Integral Velocity Control mode. When the Stop flag is set, the
axis will decelerate to a stop and remain in this mode with a command velocity of zero until
the Stop flag is cleared and a new command integral velocity is specified. The Limit flag,
when set in any control mode, causes the axis to go into Initialize mode, clearing the Motor
Command and causing an immediate motor shutdown. When the Limit flag is set, none of
the three control mode flags (F0, F3, or F5) are cleared.

The Stop and Limit flags are cleared when the inputs are disabled, signifying that the emer-
gency condition has been corrected AND a write to the Status register (R1C00H) is executed.
Any byte written to the Status register will try to clear the Stop and Limit flags, but, the
lower 4 bits of that byte will also reconfigure the Status register. The interface library com-
mand 'clr_emergency' first reads the current configuration of the Status register before clear-
ing the emergency flags so that the configuration does not change. Also, the interface library
command 'enter_ctl_mode' clears the control mode flags before reestablishing Position Con-
trol mode.

 4-9

The upper four bits of the Status register may be decoded to determine if an axis is profiling
in Trapezoidal Profile control, in Initialize mode or whether the emergency conditions of
Stop and Limit have occurred. The lower four bits of the Status register may be configured
by writing the desired bit pattern as described in Table 4-6 (the upper four bits are ignored).
Bit 0 controls the Sign Reversal Inhibit of the PWM command signal, while bits 1 and 2 are
used to configure the Commutator described in Section 4.3. Bit 3 should always be set to 0.

Status Bit Function

0 PWM Sign Reversal Inhibit
 0 = off
 1 = on

1 Commutator Phase Configuration
 0 = off
 1 = on

2 Commutator Count Configuration
 0 = quadrature
 1 = full

3 Always set to 0
4 Trapezoidal Profile Flag

 1 = profiling
5 Initialize Flag

 1 = in Initialize mode
6 Stop Flag

 0 = Stop triggered
7 Limit Flag

 0 = Limit triggered

Table 4-6. Status Register

4.2.4. Control Mode Operation

The HCTL-1100 has three set up routines and four control modes that may be executed. The
three set up routines are:

MCP-04 Board Operation

 4-10

- Reset
- Initialize
- Align

The four control modes available are:

- Position Control
- Proportional Velocity Control
- Trapezoidal Profile Control
- Integral Velocity Control

The HCTL-1100 switches from one mode to another as a result of one of the following three
mechanisms:

1. By writing to the Program Mode register.
2. Setting/clearing flags F0, F3, or F5 by writing to the Flag register.
3. The controller switches automatically when certain conditions are met.

Figure 4-1 shows the flowchart for the set up routines and control modes, and shows the
commands required to switch from one mode to another.

 4-11

F0

PROPORTIONAL
VELOCITY
CONTROL

INTEGRAL
VELOCITY
CONTROL

F3

F5

ALIGN

INITIALIZATION
IDLE

RESET

PC RESET
WRITE 00H
TO R1400H

WRITE 02H
TO R1400H

WRITE 01H
TO R1400H

POSITION
CONTROL

F0, F3, F5

WRITE 03H
TO R1400H

F3
SET?

F5
SET?

YES

YES

YES

NO

NO

NO

SET/CLEAR F0, F3, OR F5

F0
SET?

Only one flag can be set at a time.*

(F0 CLEARED AT
END OF MOVE)

TRAPEZOIDAL
PROFILE

*

Figure 4-1. Operating Mode Flowchart

MCP-04 Board Operation

 4-12

Reset and Initialization

This section describes the function of each set up routine and the default parameters that are
preset.

Reset

The Reset mode is entered under all conditions by either a hard reset from the PC or a soft
reset (write 00H to the Program Mode register). When you first turn on the PC, a hard reset
occurs with the following results:

• All outputs are held low, except Sign and motor command.
• All flags (F0 through F5) are cleared.
• The PWM port is cleared to 0.
• The Motor Command port is preset to 80H (0V).
• The Commutator logic is cleared.
• The I/O control logic is cleared.
• A soft reset is executed.

When a soft reset is executed, the following conditions occur:

• The digital filter parameters are preset to:
A = E5H (229D)
B = K = 40H (64D)

• The sample timer is preset to 40H.
• The status register is cleared.
• The position counters are cleared to 0.

From Reset mode, the HCTL-1100 goes automatically to Initialize mode.

Initialize

The Initialize mode is entered either automatically from Reset or by writing 01H to the Pro-
gram Mode register at any time. In the Initialize mode, the following conditions occur:

• The Initialize Flag (F1) is set.
• The PWM Motor Command Port is set to 00H.
• The Motor Command Port is set to 80H.

 4-13

• Previously sampled data stored in the digital filter is cleared.

At this point you should pre-program all the necessary registers needed to execute the desired
control mode. After setting up the control parameters, commands can be given to execute the
desired motion.

Align Mode

The Align mode is executed only when the Commutator needs to be aligned to a multiphase
motor. The Align mode can only be entered from Initialize mode by writing 02H to the
Program Mode register (R1400H). Before attempting to enter the Align mode, the user
should clear all control mode flags and set both the Command Position and Actual Position
to zero.

The Align mode assumes: the encoder index pulse has been physically aligned to the last
motor phase during encoder/motor assembly; the Commutator parameters have been correct-
ly preprogrammed (reference Section 4.3 on the Commutator for more details); and a hard
reset (PC's reset) had been executed while the motor is stationary.

The Align mode first disables the Commutator, and with open-loop control enables the first
phase (PHA) and then the last phase (PHC or PHD) to orient the motor on the last phase
torque detent. Each phase is energized for 2048 system sampling periods (1/f). For proper
operation, the motor must come to a complete stop during the last phase enable. At this point
the Commutator is enabled and commutation is closed-loop. After Align mode has been
executed, the axis switches automatically to Position Control mode.

Position Control

Position Control performs point to point position moves with no velocity profiling. The 24
bits of the Command Registers specifies the desired position move. The position error is
calculated from the desired command position and the 24 bits in the Actual Position Regis-
ters. The full digital lead compensator is applied and the calculated motor command is out-
put. The controller will remain position locked at the command position until a new position
command is given.

MCP-04 Board Operation

 4-14

The actual and command position data is 24-bit 2's complement data stored in six 8-bit regis-
ters. Position is measured in encoder quadrature counts.

The command position resides in R3000H (MSB), R3400H, and R3800H (LSB). Writing to
R3800H latches all 24-bits at once for the control algorithm. Therefore, the command posi-
tion is written in sequence R3000H, R3400H, and R3800H. The command registers may be
read in any desired order.

The actual position resides in R4800H (MSB), R4C00H, and R5000H (LSB). Reading
R5000H latches the upper two bytes into an internal buffer. Therefore, Actual Position
registers are read in the order of R5000H, R4C00H, and R4800H for correct instantaneous
position data. The Actual Position registers can all be cleared to 0 by a write to R4C00H.
The Actual Position may be set by writing to registers R5400H, R5800H, and R5C00H while
in Initialize mode. Writing to register R5C00H latches data into all 24-bits.

Proportional Velocity Control

Proportional Velocity Control uses only the gain factor K from the digital compensator filter
D(z). The algorithm compares the 16-bit Command Velocity registers with the 16-bit Actual
Velocity registers and computes the velocity error. The velocity error is multiplied by K/4
and output as the motor command.

The Command Velocity and Actual Velocity are 16-bit 2's complement words. The units of
velocity are encoder quadrature counts per sample time. In addition, the Command Velocity
is internally divided by 16 to produce fractional resolution. The 16-bit velocity command is
interpreted as 12-bits of integer and 4-bits of fraction. The Command Velocity resides in
unlatched registers R9000H (MSB) and R8C00H (LSB). The registers can be read or written
to in any order.

 R9000H R8C00H
 IIII IIII IIII.FFFF

Command Velocity Format

The actual velocity is computed only when in this mode and is stored in registers RD400H
(MSB) and RD000H (LSB). There is no fractional component in the Actual Velocity regis-
ters and they can be read in any order.

 4-15

The controller tracks the command velocity continuously until a new mode command is
given. The system behavior after a new velocity command is governed only by the system
dynamics until a steady state velocity is reached.

The Velocity Control mode is used for applications which require as fast a change in velocity
as possible. This mode provides a "step response" velocity change without any filter com-
pensation. The controller will return to the command velocity if the motor has stalled and
will not try to "catch-up".

Integral Velocity Control

Integral Velocity Control performs continuous velocity profiling as specified by a command
velocity and acceleration. Figure 4-2 shows the capability of this control mode. You can
change velocity and acceleration any time to continuously profile velocity in time. Once the
specified velocity is reached the controller maintains that velocity until a new velocity com-
mand is given. Any command velocity change will occur at the currently specified linear
acceleration.

MCP-04 Board Operation

 4-16

VELOCITY

A3

A2

A1

1

A3

VEL1

VEL2

VEL3

USER CHANGES ACCELERATION COMMAND

USER CHANGES VELOCITY COMMAND

STOP TRIGGER

VEL = COMMAND VELOCITY

A = ACCELERATION

t

2

2

2

1

1

F5 SET

Figure 4-2. Integral Velocity Mode

The Command Velocity is an 8-bit 2's complement word stored in register RF000H. The
units of velocity are quadrature counts per sample time. While the overall range of the ve-
locity command is 8-bit 2's complement, the difference between any two sequential com-
mands must be less than 7-bits magnitude (i.e.,127 decimal). For example, when executing a
command velocity of 64H (+100D), the next velocity command must fall in the range of 7FH
(+127D) (the maximum command range) to E5H (-27D).

The command acceleration is a 16-bit scalar word stored in registers R9C00H (MSB) and
R9800H (LSB). The upper byte is the integer part and the lower byte is the fractional part.
The integer part has a range of 00H to 7FH. The fractional part is internally divided by 256
to produce fractional resolution. The units of acceleration are quadrature counts per sample
time squared.

 R9C00H R9800H
 0III IIII . FFFF FFFF

Command Acceleration Format

 4-17

Internally, the HCTL-1100 performs velocity profiling through position control. The con-
troller generates position profiles based on the specified command velocity and acceleration.
The advantage that this mode has over Proportional Velocity mode is that the system has
zero steady state velocity error due to an added integral term in the profile generation. In the
Integral Velocity mode, the system is actually a position control system and, therefore, the
complete dynamic compensation D(z) is utilized.

If the external Stop line or Status bit 6 is asserted during this mode the controller automati-
cally decelerates to zero velocity at the presently specified acceleration factor and stays in
this condition until the flag is cleared. New velocity command data can then be given to
restart Integral Velocity Control. The other control modes ignore the Stop flag and therefore
are not effected by its assertion.

Trapezoidal Profile Control

Trapezoidal Profile Control performs point to point position moves and profiles the velocity
trajectory to a trapezoid or triangle. The controller generates the necessary profile to con-
form to the acceleration, maximum velocity, and final position commands. If the maximum
velocity is reached before the halfway distance point, the profile will be trapezoidal, other-
wise the profile will be triangular. Figure 4-3 shows the two possible velocity profiles while
in Trapezoidal Profile Control.

MCP-04 Board Operation

 4-18

MAXIMUM VELOCITY

VELOCITY

1/2 WAY TO
FINAL POSITION

TRIANGULAR FINAL POSITION

F0 SET
ACCEL ACCEL F0 CLEARED BY

HCTL - 1100

VELOCITY
F0 SET

ACCEL ACCEL F0 CLEARED BY
HCTL - 1100

MAXIMUM VELOCITY

TRAPEZOIDAL

Figure 4-3. Trapezoidal Profile Control

The command data for this control mode is a 24-bit 2's complement final position written to
RAC00H (MSB), RA800H, and RA400H (LSB). The acceleration resides in registers
R9C00H (MSB) and R9800H (LSB). It has the same integer and fraction format as dis-
cussed under Integral Velocity Control. The maximum velocity is a 7-bit scalar range from
00H to 7FH written to register RA000H with units of quadrature counts per sample. The
command data registers can be written or read in any order.

Once you have entered the desired data, flag F0 is set in the Flag register to commence mo-
tion. When the Trapezoidal Profile commands have been completed, the controller clears the
F0 flag and locks on to the final position. The status of the Profile flag can be monitored in
the Status register and at J1 Profile pin, or by the GRN Profile LED on the board. During a
Trapezoidal Profile move, no new command data should be sent to the controller.

The internal profile generator in the controller produces a position profile using the Com-
mand Position (R3000H - R3800H) as the starting point and the Final Position (RAC00H -

 4-19

RA400H) as the end point. The controller actually performs position control while the pro-
file generator loads profile data into the Command Position registers. The full digital filter,
D(z), is applied for compensation.

4.3. COMMUTATOR

The trend in new servo-systems is clearly towards the DC brushless motor. This type of
motor generally has better reliability due to the lack of brushes and also has operational ad-
vantages. The brushless motor generally has a higher operating speed capability as its elec-
tronic commutation has no fundamental high frequency limit (like brush bounce of con-
ventional brush motors). In addition, the brushless motor offers a higher peak torque, as
current is only limited by voltage and winding resistance, and not by the maximum accept-
able current density at the brush/commutator interface (assuming demagnetization limits do
not apply). Finally, as heat is generated in the outer stator (I2R losses) instead of in the rotor,
better cooling is possible and therefore a higher continuous torque rating is possible.

The Commutator is used to output the proper phase sequences for electrical commutation of
multi-phase motors. Variable reluctance, brushless DC, and stepper motors require elec-
tronic commutation and may be controlled with the Commutator's outputs. However, most
brushless DC motor drivers will run directly from the ±10V analog command output without
use of the provided commutator. The Commutator is useful in lowering component cost due
to driving the motor coils directly with H-bridge type amplifiers and achieving higher speeds
due to electronic phase advance.

4.3.1. Configuration Registers

The commutator is designed to work with 3 phase and 4 phase motors of various winding
configurations and with various shaft encoder counts. Two phase motors may also be con-
trolled by selecting the 4 phase configuration and ANDing the phase outputs appropriately.

Besides the correct phase enable sequence, the Commutator provides programmable phase
overlap and phase advance. Phase overlap means that more than one phase output will be
enabled at the transition between phases. Phase overlap is used for better torque ripple con-
trol and may also increase the average torque output of the motor. Phase advance causes the
phase output to be ahead of the normal point in the rotation of the motor shaft, and allows

MCP-04 Board Operation

 4-20

you to compensate for the frequency characteristics of the motor/driver combination. The
amount of phase advance can be programmed to linearly increase with an increase in the
velocity of the motor's shaft. The phase advance feature allows more time for current to
build up in each coil of the motor which results in higher torques at high speeds. The Com-
mutator can also be used to generate unique sequences by further decoding the phase outputs
externally to drive more complex motors and drivers.

The outputs of the Commutator are located at receptacle J2 and are labeled PH-A, PH-B, PH-
C, and PH-D. The Commutator uses both channels and the index pulse of an incremental
encoder. The index pulse of the encoder must be physically aligned to the motor's torque
cycle location so that this point may be used as the reference point with respect to the Com-
mutator phase outputs. The index pulse should be permanently aligned during motor encoder
assembly to the last motor phase. This is done by energizing the last phase of the motor
during assembly and permanently attaching the encoder code wheel to the motor shaft so that
the index pulse is active. Fine tuning of alignment for commutation purposes is done elec-
tronically using the Offset register once the complete control system is set up.

The Commutator is programmed by the data in the following registers:

• Status Register
• Commutator Ring Register
• X Register
• Y Phase Overlap Register
• Offset Register
• Velocity Timer Register
• Maximum Phase Advance Register

Figure 4-4 shows an example of the relationship between all the parameters. The following
headings describe each of these registers with the Exerciser command given in parentheses.
Refer to the MCP-04 Software section for more details.

 4-21

CASE 1: X = 3, Y = 0, OFFSET = 0, ADVANCE = 0 CASE 2: X = 2, Y = 1, OFFSET = 0, ADVANCE = 0

CASE 3: X = 2, Y = 1, OFFSET = 2, ADVANCE = 0 CASE 4: X = 2, Y = 1, OFFSET = 2, ADVANCE = 1

X

X

X

XX

RING RING

Y YX

Y YX

Y YXY

RING

Y YXY YX

Y YX

Y YXY YX

COUNTS

COUNTS COUNTS

COUNTS

Y YX

Y YX

Y YX

Y YX

Y YX

Y

OFFSET

RING

ADVANCE
OFFSET

0 1 2 3 4 5 6 7 8 9 10 1128 29 30

0 1 2 3 4 5 6 7 8 9 10 1128 29 300 1 2 3 4 5 6 7 8 9 10 1128 29 30

0 1 2 3 4 5 6 7 8 9 10 1128 29 30

Figure 4-4 Commutator Configuration

Status Register (STATUS)

Bit #1 0 = 3 phase configuration.
 1 = 4 phase configuration.
Bit #2 0 = position measured in quadrature counts.
 1 = position measured in full counts.

Commutator Ring Register (RING)

The Ring register is a scalar and determines the length of the electrical cycle measured in full
or quadrature counts as set by bit #2 in the Status register. The magnitude of the Ring is
limited to 7FH.

MCP-04 Board Operation

 4-22

X Register (X_REG)

The X register sets the interval during which a phase is active without overlap. The data
must be a scalar 00H to 7FH.

Y Phase Overlap Register (Y_REG)

The Y Phase Overlap register sets the interval during which two sequential phases are both
active. The data must be a scalar 00H to 7FH. X and Y must satisfy Equation 4-3.

 X + Y = Ring / (# of phases) (4-3)

The Ring, X, and Y registers define the basic electrical commutation cycle.

Offset Register (OFFSET)

The Offset register contains the 2's complement data which determines the relative start of
the electrical cycle with respect to the index pulse. Since the index pulse must be physically
referenced to the rotor, the offset performs fine alignment between the electrical and me-
chanical torque cycles.

Velocity Timer Register (VEL_TIMER)

The phase advance feature performs the function of linearly increasing the phase advance
according to measured speed up to a set maximum. The Velocity Timer register contains
scalar data (0H to FFH) which determines the amount of phase advance at a given velocity.
The phase advance is interpreted in the units set for the ring counter by bit #2 in the Status
register. The velocity is measured in revolutions per second.

 Advance = Nv(∆t) (4-4)

where:

∆t = 8 x 10-6 (VEL_TIMER + 1)*
N = encoder counts/revolution

*Assuming a 2 MHz board clock frequency setting.

 4-23

v = velocity (rev/sec.)

If the phase advance feature is not used, set the Command Velocity Timer register to zero.

Maximum Phase Advance Register (MAX_ADV)

The scalar data in the Maximum Phase Advance register sets the upper limit for phase ad-
vance regardless of rotor speed. Figure 4-5 shows the relationship between the Velocity
Timer and Maximum Phase Advance registers. If the phase advance feature is not used, set
the Maximum Phase Advance register to zero.

ADVANCE

(counts)

MAXIMUM
ADVANCE

VELOCITY (rev/sec)

SLOPE = N²t

Figure 4-5. Phase Advance vs. Motor Velocity

4.3.2. Commutator Constraints

There are several numerical constraints to be aware of when using the HCTL-1100 Com-
mutator. The parameters of Ring, X, Y, and Maximum Phase Advance must be positive
numbers (00H to 7FH). The Offset register is an 8-bit 2's complement number. And, the
equation below must be satisfied.

 80H ≤ 1.5 Ring + Offset ± Max Advance ≤ 7FH (4-5)

MCP-04 Board Operation

 4-24

The Commutator works on a circular ring counter principle whose range is defined by the
Commutator Ring register. This means that for a ring of 96 counts and a needed offset of
10D, the Offset register can be programmed as 0AH (10D) or AAH (-86D), the latter satis-
fying Equation 4-5. Due to the restrictions imposed on the value of Ring, the resolution of
the shaft encoder is limited for a given type of motor commutation. A motor with a large
number of commutation cycles can have a larger resolution encoder.

Example: Determine the highest resolution shaft encoder that may be used to commutate a

4-phase, 4-pole brushless DC motor.

1). Select the 4-phase and full count mode for the Commutator by writing a 6 to the

Status register. The Commutator full count mode should be used to obtain higher po-
sition resolution due to Equation 4-5.

2). A 4 phase, 4-pole motor will provide two torque cycles of four phases and 90 degree

electrical torque cycles. So that:

 Ring register = (encoder counts) / 2 torque cycles

3). By measuring the motor torque curve in both directions, it is determined that an offset

of 3 degrees, and a phase overlap of 2 degrees is desired.

 Offset Register = 3°
encoder counts

360 degrees

Since the maximum value for the Ring register is 127 decimal, the maximum encoder counts
is 2 x 127 = 254 counts. An offset is needed of about 2 counts to give the required 3 degree
offset. This is equivalent to 02H (2D) or 83H (-125D), the latter satisfying Equation 4-5. An
encoder with 254 counts in quadrature provides less than 1/3rd of a degree resolution which
is perfect for applications requiring high speeds. Applications requiring higher accuracy
should use a motor with more commutation cycles or a higher transmission ratio. For exam-
ple, a 4 phase 7.5 degree step angle stepper motor provides 12 commutation cycles per revo-
lution. This type of motor could use a shaft encoder with 1524 quadrature counts for 1/17th
of a degree resolution.

The recommended interface to DC brushless motors is given in Figure 4-6. The PWM Motor
Command Port and the Commutator outputs are combined using AND gates to drive power

 4-25

drivers. The diagram shows all four phases of the Commutator being used, but only three
phases would be required for a three phase DC brushless motor.

PWM

C
O
M
M
U
T
A
T
O
R

Sign

Pulse

PH A

PH B

PH C

PH D

AND Gates
Power Drivers

Motor Coil "A"

Motor Coil "B"

Motor Coil "C"

Motor Coil "D"

Figure 4-6. Interface to Brushless DC Motors

 5-1

Section 5

SYSTEM MODELING AND TUNING

The design of your closed-loop motion control system will require the tuning of the HCTL-
1100's digital compensator. This section describes an analytical method for tuning the digital
compensator. An experimental procedure was given in Section 3.2.2 of this manual. The
main difficulty of the analytical design method is that it requires knowledge of all the system
parameters. The models are linearized and have proven reliable for most applications. The
parameter that is most often difficult to estimate is the load inertia in complex structures or
multi-link configurations. Many designers use a "worst case" inertia and tune the controller
for that value. Other designers break down the inertial changes into four or five ranges and
change the tuning accordingly. Other approaches may be implemented including software
that may adjust the compensator parameters in real-time. One advantage of the digital com-
pensator over an analog approach is that it allows much more flexibility in the design ap-
proach.

The material in this section assumes a general working knowledge of analog control design
methods. Specifically, you should be familiar with Laplace transforms, the s-domain,
pole/zero concepts, and Bode plots. The analytical method described computes the open-
loop transfer function in the s-domain and uses the Bode plot to find the gain and phase
margins. The digital compensator is used to increase the system bandwidth and is computed
directly in the z-domain by referencing normalized frequency plots for the pole and zero of
the digital compensator in the HCTL-1100. The z operator can be modeled as esT in the s-
domain.

The steps recommended for designing a motion control system are as follows:

Step 1. Choose a motor and transmission for the required load. A sufficient torque mar-

gin at both continuous and duty cycle operation should be specified so that the
maximum motor current will never be exceeded. Another common criteria for
choosing a motor is based on the ratio of the peak torque (TP) developed by the
motor to the moment of inertia of the motor's armature and load (JM + JL). The
objective is to select the motor with the maximum ratio of

System Modeling and Tuning

 5-2

TP

JM + JL

Step 2. Choose a quadrature incremental encoder to monitor the motor's shaft position

based on the encoder resolution and accuracy required for the application. A dif-
ferential line driver output is recommended for added noise immunity.

Step 3. Choose an amplifier to drive the motor. The amplifier must be capable of sup-

plying the current and voltage required by the motor for the load conditions. A
pulse-width-modulated amplifier is recommended over a linear amplifier due to
power efficiency and cost benefits.

Step 4. Model the open-loop transfer function of the system using s-plane transfer func-

tions. A Bode plot showing phase margin and gain margin of the open-loop sys-
tem can then be drawn from the open-loop transfer function.

Step 5. Choose the desired phase margin and gain-crossover frequency for the compen-

sated system. The closed-loop response (step response and bandwidth) will be di-
rectly affected by these two Bode plot measurements.

Step 6. Find the HCTL-1100's digital compensation filter parameters based on the desired

phase margin and gain-crossover frequency for the compensated system. This is
done by using the normalized frequency plots given later in this section.

5.1. MODELING THE SYSTEM COMPONENTS

In order to understand the operation of the control system we need a mathematical model for
all the system components. The functional elements of the control system shown in Figure 5-
1 include a controller (the HCTL-1100's digital filter and the zero-order-hold), an amplifier, a
motor (includes the load), and an incremental encoder.

 5-3

POSITION
COMMAND

 D(z) ZOH AMP MOTOR
(ω)(V) (V/A)(N)(N)(N)

(N)
E

1
SDAC

+

_ (θ)

Figure 5-1. Functional Elements of the Control System

The open-loop transfer function, M(s), for this system is determined by multiplying all of the
individual component transfer functions together.

 M(s) = [ZOH][DAC][Amp][Motor][Encoder] (5-1)

5.1.1. Zero Order Hold Transfer Function

The zero order hold (ZOH) models the delay of the discrete sampling time of the HCTL-
1100. The delay is estimated to be half of the sampling period or z-1/2. The continuous time
transfer function of the ZOH is:

 Z(s) = e-sT/2 (5-2)

where:

T = the sampling time of the HCTL-1100 in seconds.

The magnitude contribution of the ZOH is unity for all frequencies. The phase contribution
of the ZOH is:

 PZOH = ω
T
2 (radians) (5-3)

where:

ω = the frequency of interest (rad/sec)

System Modeling and Tuning

 5-4

T = the sampling time of the HCTL-1100 (sec)

Phase lag is added to the system by increasing the sampling time of the digital compensator.
It is usually desirable therefore to choose the fastest sampling time possible so as to induce
the least amount of phase lag into the system. Increasing the sampling time also allows for a
higher possible system bandwidth. Generally, the sampling frequency should exceed the
system bandwidth (in hertz) at least tenfold.

5.1.2. DAC Transfer Function

The MCP-04 uses an 8-bit DAC to output a ±10 volt range command signal. The DAC's
transfer function is simply its gain (KD). The DAC does not contribute a phase shift to the

open-loop transfer function. The gain that should be used is:

 KD = 10/256 = .039 (volts/count) (5-4)

5.1.3. Amplifier Transfer Function

The amplifier transfer function is its gain (KA). The amplifier does not contribute a phase

shift to the open-loop transfer function when its electrical time constant is neglected. In
general, if the desired bandwidth of the system is 10 times smaller than the amplifier's band-
width, then the amplifier's electrical time constant can be neglected.

If the PWM port is used, the amplifier will be regulated by a range of 64H to 9CH (-100 to
100 decimal). The units of the gain (KA) is a combination of the PWM port and the ampli-

fier. A simplified formula for computing the gain of a PWM amplifier is:

 KA =
[max output] - [min output]

[max duty cycle] - [min duty cycle] (5-5)

The choice of using either a current or voltage amplifier affects the motor transfer function.

 5-5

5.1.4. DC Motor Transfer Function

The motor transfer function includes the inertial loads connected to the motor shaft. The
inertia of the load as seen by the motor must be calculated. A reference book on mechanical
design should be consulted if required to determine the correct moment of inertia. The total
moment of inertia for the system (J) includes the load inertia (JL), the motor's armature iner-
tia (JM), and the encoder codewheel inertia (JC). Therefore:

 J = JL + JM + JC (5-6)

The DC motor parameters of interest that describe the electro-mechanical characteristics are
the torque constant (KT)[Nm/amp], the moment of inertia of the armature (JM)[kg-m2], the
terminal resistance (R)[ohms], the voltage constant (KE)[V-sec/rad], and armature inductance
(L)[henries].

Different transfer functions are used for a motor driven by a voltage source amplifier than for
a motor driven by a current source amplifier.

DC Motors Driven by Voltage Source Amplifiers

The DC motor transfer function for a motor driven by a voltage source amplifier is:

 G(s) =
position input
voltage input =

θ(s)
V(s) =

1/KE
s(sTM +1)(sTM + 1) (5-7)

for TM > 10 TE.

where

 TM =
RJ

[KE][KT] (sec) (5-8)

is the mechanical time constant, and

 TE =
L
R (sec) (5-9)

is the electrical time constant.

System Modeling and Tuning

 5-6

Note that the s in the denominator indicates integration due to the fact that position is the
output. The term J is the total system inertial load that the motor is driving, KE is the voltage
constant of the motor, and KT is the torque constant of the motor.

The phase contribution of a motor (PM(ω)), driven at frequency ω by a voltage source is:

 PM(ω) = -arctan(ωTM) - arctan(ωTE) - π/2 (radians) (5-10)

The magnitude contribution of a motor (MM(ω)), driven at frequency ω by a voltage source

is:

 MM(ω) =

1
KE

ω 1 + (ωTM)2 1 + (ωTE)2 (5-11)

where

 ω = the frequency of interest in rad/sec.

DC Motors Driven by Current Source Amplifiers

The DC motor transfer function for a motor driven by a current source is

 G(s) =
position output
current input =

θ(s)
I(s) =

KT
Js2 (5-12)

The phase contribution of a motor (PM(ω)), driven at frequency ω by a current source is

 PM(ω) = -π (radians) (5-13)

The magnitude contribution of a motor (MM(ω)), driven at frequency ω by a current source
amplifier is:

 MM(ω) =
KT
Jω2 (5-14)

 5-7

where

 ω = the frequency of interest in rad/sec.

5.1.5. Encoder Transfer Function

The incremental encoder's transfer function (E) is

 E =
C
2π =

4N
2π (counts/rad) (5-15)

where

C = quadrature counts per revolution.
N = the number of slits in the codewheel per revolution

The encoder's codewheel count does not contribute to the phase of the open-loop transfer
function. The magnitude contribution of the encoder's codewheel count (E) to the open-loop
transfer function is a constant.

 E =
C
2π (counts/rad) (5-16)

The phase and magnitude contribution of the codewheel's inertia (JC) has already been in-
cluded in the total system load on the motor.

5.2. TUNING THE DIGITAL COMPENSATION FILTER

Now that all of the individual transfer functions have been determined for each component,
the open-loop transfer function M(s) may be calculated by multiplying each individual trans-
fer function together. The Bode plot can then be plotted for the open-loop transfer function.
The purpose of the Bode plot is to show the frequency response of the uncompensated sys-
tem. The following previously defined variables will be used to calculate the phase and
magnitude equations.

E = gain of the incremental encoder (counts/rad)

System Modeling and Tuning

 5-8

KA = gain of the amplifier (volts/volt or amps/volt for linear amplifiers and

volts/count or amps/count for PWM amplifiers)
KD = gain of the DAC (volts/count)
KE = voltage constant of the motor (volt-sec/rad)
KT = torque constant of the motor (N-m/amp)

J = total system moment of inertia (kg-m2)
TE = electrical time constant of the motor (sec)
TM = mechanical time constant of the motor (sec)
MM(ω) = magnitude of motor transfer function
PM(ω) = phase of motor transfer function (radians)
PZOH(ω) = phase of zero order hold transfer function (radians)

T = sampling time of the HCTL-1100 (sec)
ω = frequency of interest (rad/sec)

The phase of the uncompensated open-loop transfer function (PU(ω)) is determined by the

equation

 PU(ω) = PM(ω) + PZOH(ω) (radians) (5-17)

For a system employing a voltage source amplifier, the following equation is used to calcu-
late the phase of the open-loop transfer function:

 PU(ω) = -arctan(ωTM) - arctan(ωTE) - π/2 + ωT/2 (radians) (5-18)

For systems with a current source amplifier, the equation becomes:

 PU(ω) = -π - ωT/2 (radians) (5-19)

Note: multiply PU(ω) by 180°/π to obtain the phase in degrees.

The magnitude of the uncompensated open-loop transfer function (MU(ω)) is

 MU(ω) = [MM(ω)][KD][KA][E] (5-20)

The magnitude of the uncompensated open-loop transfer function using a voltage source is

 5-9

 MU(ω) =

1
KE

 [KD][KA]
C
2π

ω 1 + (ωTM)2 1 + (ωTE)2 (5-21)

The uncompensated magnitude for the open-loop transfer function of systems with a current
amplifier is

 MU(ω) =
KTKDKAC

2πJω2 (5-22)

Note: to express the magnitude in db, use

 db = 20 log(MU(ω)) (5-23)

5.2.1. Determination of the Gain and Phase Margin

The next step is to make a Bode plot of the resulting equations for magnitude and phase and
determine the gain and phase margins. Gain margin is the amount of gain in decibels that
can be allowed to increase in the loop before the closed-loop system reaches instability. The
phase margin is a measure of the relative stability of the closed-loop system expressed in
degrees. As an illustrative example, consider that the open-loop transfer function of a system
is given by

 G(s) =
10

s(1 + 0.2s)(1+ 0.02s)

The Bode plot of G(s) is shown in Figure 5-2. The frequency at which the open-loop gain is
1 (0 dB) is defined as the gain-crossover frequency (ωc). The frequency when the phase
angle is -180° is called the phase-crossover frequency (ωp). The gain margin (GM) is

defined as the magnitude of the open-loop transfer function evaluated at the phase-crossover
frequency and referenced to the 0 dB axis. The phase margin (PM) is defined as the sum of
the phase angle of the open-loop transfer function evaluated at the gain-crossover frequency
plus 180 degrees. If both the phase and gain margins are positive the closed-loop system will
be stable.

The gain margin (GM) equation is

System Modeling and Tuning

 5-10

 GM = -20 log(MU(ωp)) (db) (5-24)

The phase margin (PM) equation is

 PM = 180° + PU(ωc)(180°/π) (degrees) (5-25)

Figure 5-2. Bode Plot of G(s) = 10/[s(1 +0.2s)(1 + 0.02s)]

5.2.2. Modification of the Open Loop Transfer Function

The open-loop transfer function can be modified with the MCP-04 digital compensator to
improve the bandwidth and stability of the closed-loop system. The stability and the band-

 5-11

width of the closed-loop system may be increased by increasing the phase margin and the
gain-crossover frequency of the system. The digital compensation filter can contribute a
maximum phase lead of approximately 80 degrees to the uncompensated phase margin. The
amount of bandwidth that can be added by the digital filter is dependent on the system para-
meters. The gain of the filter and the amplifier can be used to change the gain margin of the
system.

A realistic gain-crossover frequency should be selected to provide the desired system band-
width. A system bandwidth above 60 Hz should be obtainable for most motion control
systems. A well damped system should have a phase margin between 30° and 45°. The
desired gain-crossover frequency and phase margin will be required for the design method
that follows.

The uncompensated phase margin at the desired gain-crossover frequency (ωc') must be
calculated for the open-loop transfer function using equation (5-17). The phase lead (PL) that
the digital compensator filter must provide is found from the following equation.

 PL = PMC - PMU (degrees) (5-26)

where

PMC = the desired compensated phase margin at ωc'
PMU = the uncompensated phase margin at ωc'

The gain (KF) required from the digital filter to make the gain equal to one at ωc' is

 KF =
1

MU(ωC') (5-27)

where

MU(ωc') = the magnitude of the uncompensated open-loop system at the desired gain-
crossover frequency (ωc')

The digital compensation filter is of the form

 D(z) =
[K][z-A]
[4][z + B] = ⎣⎢

⎡
⎦⎥
⎤K

4 ⎣⎢
⎡

⎦⎥
⎤z - A

z ⎣⎢
⎡

⎦⎥
⎤z

z + B (5-28)

System Modeling and Tuning

 5-12

Both the pole term (B) and the zero term (A) add phase lead to the system. The K term may
be used to adjust the gain and compensate for the gain reduction associated with the digital
filter's pole and zero term. The combination method uses graphs of the digital compensator
pole and zero to determine values for the parameters A,B and K. Normalized frequencies are
used in the graphs to allow a wide range of bandwidths and sample times. The normalized
frequency (ωN(ω)) is calculated as the frequency (ω) multiplied by the sampling time (T) of
the system.

 ωN(ω) = [ω][T] (radians) (5-29)

The normalized frequency plots for the phase and magnitude of the pole and zero terms are
the result of the direct mapping of the digital compensation filter into the continuous time
domain.

The graphs for the pole term are derived by substituting z = ejωt into the z/(z + B) portion of
Equation 5-28. The phase of the pole is found by taking the argument to get

 PP(ωN) = arg
⎣
⎢
⎡

⎦
⎥
⎤ejωT

ejωT + B = -arctan
⎣
⎢
⎡

⎦
⎥
⎤BsinωT

BcosωT + 1 (5-30)

The magnitude of the pole term is

 Mp(ωN) =
⎪
⎪
⎪

⎪
⎪
⎪ejωT

ejωT + B = [BcosωT + 1]2 + [BsinωT]2 (5-31)

The graphs of the zero term are derived from substituting z = ejωT into (z - A)/z portion of
Equation 5-28. The phase and magnitude of the zero term are derived in a similar manner
and are given below.

 PZ(ωN) = arg
⎣
⎢
⎡

⎦
⎥
⎤ejωT - A

ejωT = -arctan
⎣
⎢
⎡

⎦
⎥
⎤AsinωT

-AcosωT + 1 (5-32)

and

 MZ(ωN) =
⎪
⎪
⎪

⎪
⎪
⎪ejωT - A

ejωT = [-AcosωT + 1]2 + [AsinωT]2 (5-33)

 5-13

Figure 5-3, 5-4, 5-5, and 5-6 show the results of plotting Equations 5-30 thru 5-33. Note that
for all four graphs the value of the pole term (B) and the zero term (A) is always less than or
equal to 1.0 for proper system design. Follow the guide lines outlined below to design the
digital compensation filter by the combination method.

Step 1. Using Figure 5-3, choose a large value for the pole term (B) to contribute sig-

nificant phase lead at the normalized desired gain-crossover frequency of the sys-
tem.

Step 2. On Figure 5-4, read the value of the magnitude for the chosen value of B at the

normalized desired gain-crossover frequency.

Step 3. Determine the remaining phase lead which must be provided from the zero term

(A) of the digital compensator using the equation:

 PZ(ωNC') = PL - PP(ωNC') (degrees) (5-33)

where

PL = the required phase lead contributed from the digital compensator
PP(ωNC') = the phase lead contributed by the pole term at the desired nor-
malized gain-crossover frequency

Step 4. On Figure 5-5, find the intersection of the normalized desired gain-crossover

frequency and the required phase lead required from the zero term. Estimate the
value of the zero term A at this point.

Step 5. From Figure 5-6, find the value of the zero term's magnitude by plotting the esti-

mated zero term (A) at the desired normalized gain-crossover frequency.

Step 6. Use the following equation to find the value of the gain (K):

 K =
KF

MZ(ωNC') MP(ωNC') (5-34)

where

System Modeling and Tuning

 5-14

KF = the gain required by the digital filter to provide the desired gain-
crossover frequency
Mz(ωNC') = the magnitude of the zero term
MP(ωNC') = the magnitude of the pole term

Step 7. Program the the digital filter parameters with the following:

Zero = A
Pole = B
Gain = K

 5-15

Figure 5-3. Phase Lead Contribution of the Pole Term

Figure 5-4. Magnitude Contribution of the Pole Term

System Modeling and Tuning

 5-16

Figure 5-5. Phase Lead Contribution of the Zero Term

Figure 5-6. Magnitude Contribution of the Zero Term

 6-1

Section 6

MCP-04 SOFTWARE

This section describes the Mektronix supporting software for the MCP-04 boards. The fol-
lowing is a list of the software programs provided with the distribution disk.

• Exerciser
• Check Utility
• C Interface Library
• Windows 98 DLL
• Windows NT Driver

The MCP-04 Exerciser allows user commands to be issued from the PC's keyboard or from a
text file. It serves as a motion control development tool as well as a way to become familiar
with the MCP-04 programming language interface libraries. The collection of Exerciser
commands is not intended to be used as a programming language. User application programs
should be implemented using high level languages such as C++.

We include the source code on the distribution disk for the high level programming language
interface libraries so that you can examine how we have implemented the routines. You can
compile these routines with your own compiler and then link them with your application
programs.

6.1. SOFTWARE OPERATION

This sub-section describes the general principles used in implementing the software provided
with the MCP-04 board. Important information about limiting and rounding conventions,
board numbering and global axis numbering are discussed. We also include some tips for
trouble shooting.

Exerciser & Library Reference

 6-2

6.1.1. Limiting and Rounding Conventions

Whenever a register is set with a value out of its defined range, it will be limited with the
corresponding boundary values. The only exceptions are the filter parameters zero and pole,
where special rules are used. If a register is to be set with a real value that exceeds the regis-
ter resolution, the value is rounded to the nearest possible setting. The actual setting in effect
may be obtained as an echo from the Exerciser or as the return value of a library routine.
Consult the specific manual pages in Section 6.4 for more information.

6.1.2. Board Numbers and Global Axis Numbers

MCP-04 software assigns a global axis number to each axis in your system, which may
consists of a number of MCP-04 boards. The board numbers and global axis numbers are
described in the Installation section.

6.1.3. Initialization

The MCP-04 boards must be initialized each time the host personal computer is booted. The
initialization process consists of two procedures:

1) setting the DOS environment variable MCINIT by running the MCINIT.BAT file,
and

2) calling the MCINIT library function from within an application program.

The only exception to the above is when the system consists of one MCP-04 whose starting
address is set to 3E0H, in which case the MCINIT.BAT is not required. You may check the
current DOS environment by typing

x> set

If environment variable MCINIT does not show up, locate and then run MCINIT.BAT.
Make sure that a valid MCINIT environment shows up when command 'set' is issued from
DOS before trying to run the Exerciser again.

 6-3

If your application program was developed using the provided interface libraries and does
not seem to work, you should first check the DOS environment variable MCINIT as de-
scribed above. Then make sure subroutine 'mc_init' ('mc.init' in BASIC) is called before any
subroutine or function in the MCP-04 Programming Interface Library.

6.2. MCP-04 EXERCISER

The MCP-04 Motion Controller Exerciser is designed to work with a motion control system
employing any number of MCP-04 boards. It is useful as a motion control debugging tool
and to become familiar with the commands. By executing commands from the keyboard or
from an ASCII file, the Exerciser provides an interactive way to issue commands to the
motion controller boards of your system.

6.2.1. Invocation

If EXERCISE.EXE is on a hard disk, say in directory C:\MCP, enter the directory and invoke
the exerciser by typing

C> cd \mcp
C> ex

The Exerciser will prompt you with a period "." and then wait for your command.

6.2.2. Usage

The Exerciser is an interactive tool that allows commands to be issued to the MCP-04 motion
controller boards. The AXIS command selects which global axis to which commands are
sent, since only one axis can be interrogated at a time. The ECHO command determines the
output display, in response to a user command, in either long, short or off format. Com-
mands can easily be repeated by pressing the [F3] key and then the [CR] (carriage return).
Any DOS executable may also be invoked without leaving the Exerciser via a temporary
DOS escape.

Exerciser & Library Reference

 6-4

Commands

Commands to the Exerciser can be issued directly from the keyboard under the Exerciser
prompt ('.') or from a ASCII text file. Cases (upper or lower) are irrelevant. Namely, a
command may be in all upper cases, all lower cases, or a combination of upper and lower
cases.

A Exerciser command uses one of the following three formats:

(1) . ? <variable>
(2) . <variable> = <value>
(3) . <command> < parameter 1> <parameter 2> ...

The registers and I/O ports on MCP-04 boards and certain system parameters are referred by
variables in the Exerciser. A variable represents a piece of storage whose value can be set
and/or retrieved. For example, the digital filter parameter gain is a variable. Thus, it can be
referenced by the first two command formats. Try the following example:

. gain = 21.25 set GAIN to 21.25
21.25 echo from Exerciser
. ?gain what is GAIN ?
21.25 echo from Exerciser
. gain = 56.50 set GAIN to 56.50
56.50 echo from Exerciser
. ?gain what is GAIN
56.50 echo from Exerciser

While commands in general are for setting or getting HCTL-1100 registers, other commands
perform auxiliary functions and have unique formats. For example:

. reset reset current axis (axis 1)
reset: (axis 1) echo from Exerciser
. echo long set echo format to long

Consult reference pages in Section 6.4 for more information on Exerciser commands.

 6-5

Current Axis

An important notion in the Exerciser is the current axis, which is set to global axis 1 when
the Exerciser gets started. The current axis can be determined at any time by command:

 . ?axis

To select another axis, use:

. axis = <global axis number>

Most operations in the Exerciser apply to the current axis, or the board that contains the
current axis.

On-line Help

Details on each command (syntax and semantics) are explained in the reference pages as well
as in an on-line help facility. To start the help facility inside the Exerciser, type either

. help
or
 . help <topic>

The former is menu driven in which topics are grouped according to their functionality. The
latter simply prints user selected <topic> to the screen.

Echo Mode

Three echo modes are provided: off, short and long. The default mode is short. Off turns off
all echoes to the screen. Short echoes the command briefly (usually the value of a variable
involved in the command). Long echoes detailed information about each command executed.
The following is an example.

Exerciser & Library Reference

 6-6

. ? gain echo is short
16.00
. echo off set echo to off
. ? gain
. echo long set echo to long
. ? gain
gain (axis 2): 16.00

The echo to a 'set' command (command of the form <variable> = <value>) is the actual
setting in effect. For example:

. gain = 23.341 the resolution is 0.25
23.50 nearest possible setting
? gain
23.50

Recall that the specified value is always rounded to the nearest possible setting.

Command File

Command files, stored as an ASCII text containing a series of Exerciser commands may be
executed inside the Exerciser by issuing the EXECUTE command.

. execute <command file>

An ASCII text file may also be executed repeatedly by optionally specifying the number of
iterations after the file name.

 . execute <command file> [<number of iterations>]

The effect of executing a command file is the same as if the commands in the file were typed
manually from the keyboard. Caution must be taken so that each command move will have
enough time to complete before the next command is issued. The WAIT command in the
Exerciser can be employed for this specific purpose.

 6-7

An Exerciser command file may be also be executed directly from the DOS shell by typing

x> exercise <command file>

The commands in <command file> will be interpreted by the Exerciser. The control returns
to DOS once the end of the command file has been reached.

Run (DOS Escape)

DOS commands or any DOS executable program (.BAT, .COM and .EXE files), even the
Exerciser itself, may be invoked inside the Exerciser by employing the RUN command. For
example:

. run dir a:\

lists the root directory of drive A.

'!' is a short hand for 'run'. Therefore,

. ! ex

invokes the Exerciser within the Exerciser. Up to 10 parameters may be passed to the DOS
command or the executable program.

Repeat (!!)

The last exerciser command issued can be repeated by typing !! at the Exerciser dot prompt.
For example:

. ? pole
-0.25000000
. !!
. ? pole
-0.25000000

Exerciser & Library Reference

 6-8

Note that the function key F3 has the same effect as !!.

Short Hand

Each Exerciser command has an equivalent 2-letter short hand version. This is very con-
venient if you issue a lot of commands through the Exerciser. For example, ap is used for
ACT_POS and cm is used for command ENTER_CTL_MODE. See Section 6.2.3 for a
complete listing of Exerciser commands and their corresponding short hands.

Monitor

The MCP-04 Exerciser contains a monitor, which when activated, displays on the screen
critical parameters and activities of the system in real time. Experience has shown that it is
an extremely useful debugging tool.

The monitor can be activated by typing at the Exerciser prompt

 . monitor on

The display shown in Figure 6-1 will then appear at the top portion of your PC's screen.

MCP-04 Motion Controller Monitor

Axis Mode Status Com_pos Act_pos Error Final_pos Inputs Outputs

1 CTL_MODE C0H 334455 334453 2 900 04 00
2 INIT E0H 77 1111234 ++++++ 0 00 00
3 IV_CTL C0H 1122 1119 3 600 50 00

. ? gain
gain (axis 2) = 15.25
.

Figure 6-1. Exerciser Monitor Screen Display

 6-9

Each axis is shown in one row with the current axis in reverse video. For each MCP-04
board, input and output Ports A, B and C are shown along with in-board axes No. 1, No. 2
and No. 3, respectively.

For each axis, the following system information is displayed:

 Axis Global axis number
 Status Status register
 Mode Control mode
 Com_pos Command position register
 Act_pos Actual position register
 Error difference between command and actual positions
 Final_pos Final position register (for trapezoidal profile control)

If the actual error is greater than +32,767, a number of +'s will be shown on the Error col-
umn. If the actual error is less than -32,768, a number of -'s will be shown.

Exerciser commands can be issued as usual from the lower portion of the screen. The moni-
tor can be deactivated (turned off) by command

 . monitor off

6.2.3. List of Exerciser Commands

Control Mode Commands

? com_pos [cp] get/set command position
com_pos = (n) -8,388,608 ≤ n ≤ 8,388,607

? act_pos [ap] get/set actual position
act_pos = (n) returns n (counts)

? gain [gn] get/set gain of filter
gain = (n) 0 ≤ n ≤ 63.75

? zero [zr] get/set zero of filter
zero = (n) 0 ≤ n < 1

? pole [pl] get/set pole of filter
pole = (n) -1 < n ≤ 0

Exerciser & Library Reference

 6-10

sample_freq = (n) [sf] set sample frequency of filter in Hz

? accel [ac] get/set command acceleration
accel = (n) 0 ≤ n < 128 (counts/sample time2)

? max_vel [mv] get/set maximum velocity
max_vel = (n) 0 ≤ n ≤ 127 (counts/sample time)

? final_pos [fp] get/set final position
final_pos = (n) -8,388,608 ≤ n ≤ 8,388,607 (counts)

? prop_vel [pv] get/set proportional velocity
prop_vel = (n) -2,048 ≤ n < 2,048 (counts/samp. time)

? int_vel [iv] get/set integral velocity
int_vel = (n) -128 ≤ n ≤ 127 (counts/sample time)

? act_vel [av] get actual velocity (counts/samp. time)

?ctl_mode [md] get/set control mode

go_tp_ctl [gt] go trapezoidal profile control

go_pv_ctl [gv] go proportional velocity control

go_iv_ctl [gi] go integral velocity control

enter_ctl_mode [cm] enter default position control

reset [rs] performs software reset

init [in] put controller in Initialize mode

Utility Commands

? axis [ax] get current axis number
axis = (n) select axis number

monitor (on/off) [mo] turn monitor on/off for board

echo (mode) [ec] set echo mode

execute (file) (n) [ex] execute commands in file n times

help [hp] on-line help

run (command) [!] temporary escape to DOS

wait (n) [wt] wait n x 55 msec

repeat [!!] repeat last command (also F3)

quit [qt] return to DOS

 6-11

Configuration Commands

? status [st] display current status
config [cf] prompts for desired configuration

bipolar [bp] ± command voltage format
unipolar [up] + command voltage format

open_comm_loop [ol] commutator open-loop control
close_comm_loop [cl] commutator closed-loop control

check_ring [cr] verify comm. ring parameters
check_comm [cc] verify commutator constraints

? ring [rg] get/set commutator ring
ring = (n) 0 ≤ n ≤ 127

? x_reg [xr] get/set commutator x register
x_reg = (n) 0 ≤ n ≤ 127

? y_reg [yr] get/set commutator y register
y_reg = (n) 0 ≤ n ≤ 127

? offset [of] get/set commutator offset
offset = (n) -128 ≤ n ≤ 127

? max_adv [ma] get/set max. commutator
max_adv = (n) phase advance 0 ≤ n ≤ 127

vel_timer = (n) [vt] set commutator velocity timer
 0 ≤ n ≤ 255

Miscellaneous Commands

? motor_com [mc] get/set 8-bit motor command
motor_com = (hex)

? pwm_com [pw] get/set PWM command port duty cycle
pwm_com = (n) -100 ≤ n ≤ 100

align [al] perform commutator alignment

clr_emergency [ce] clear emergency flags

home [hm] perform homing sequence

tune_filter [tf] tune filter experimentally

? port_a [pa] read from Port A
port_a = (hex) write to Port A (8-bits)

? port_b [pb] read from Port B
port_b = (hex) write to Port B (8-bits)

Exerciser & Library Reference

 6-12

? port_c [pc] read from Port C
port_c = (hex) write to Port C (4-bits)

? ext_encoder1 [e1] read 16-bit external encoder1
ext_encoder1 = 0 clear external encoder count

? ext_encoder2 [e2] read 16-bit external encoder2
ext_encoder2 = 0 clear external encoder count

? ext_encoder3 [e3] read 16-bit external encoder3
ext_encoder3 = 0 clear external encoder count

? ext_encoder4 [e4] read 16-bit external encoder4
ext_encoder4 = 0 clear external encoder count

ext_dac = (hex) [da] write to external dac

sync [sy] synchronize HCTL-1100s

 6-13

6.3. MCP-04 PROGRAMMING INTERFACE LIBRARIES

6.3.1. Programming in C

The source code for MCP-04 C Interface Library is in MC.C on the distribution disk. It
allows the user to develop his/her own application programs in C without worrying about the
details of the MCP-04 boards.

MCP.C was written for the Microsoft Visual C++ compiler (Release 1.52). The code was
developed and tested using the large memory model supported by this compiler. Early re-
leases of Microsoft C compiler should also work. This compiler was selected since it is
representative of commercially available C compilers. The C Library is used to construct the
Exerciser and Check utility programs.

Programming Hints

Data Type Conventions:

velocity, acceleration float (32 bits)
filter parameters float (32 bits)
position long (32 bits)
ports, status unsigned char (8 bits)
offset, pwm_com int (16 bits)
others unsigned int (16 bits)

Static Variables and Functions Private to MC.C:

There are several static variables and functions in MC.C that are private to the module. Care
must been taken to decompose or to extract functions from MC.C.

Exerciser & Library Reference

 6-14

MCP.H:

File MCP.H on the distribution disk contains all necessary type declarations for functions
defined in MCP.C. Therefore, it is recommended to include MCP.H in every module that
calls functions in this library.

Return Values of 'Set' functions:

The return value of a 'set' function reflects its actual setting in effect, which may be different
from the input value provided by the user as it may be out of valid range and/or subject to the
rounding rules.

List of Functions

Control Mode functions

value = get_com_pos(axis) get/set command position
set_com_pos(axis,value) -8,388,608 ≤ value ≤ 8,388,607

value = get_act_pos(axis) get/set/clear actual position
set_act_pos(axis value) -8,388,608 ≤ value ≤ 8,388,607
clr_act_pos(axis)

value = get_gain(axis) get/set gain of filter
set_gain(axis, value) 0 ≤ value ≤ 63.75

value = get_zero(axis) get/set zero of filter
set_zero(axis, value) 0 ≤ value < 1

value = get_pole(axis) get /set pole of filter
set_pole(axis, value) -1 < value ≤ 0

set_sample_freq(axis, value, md) set sample frequency of filter
value = get_sample_timer(axis) get sample timer value

value = get_accel(axis) get/set command acceleration
set_accel(axis, value) 0 ≤ value < 128 (cnts/sample time2)

value = get_max_vel(axis) get/set maximum velocity
set_max_vel(axis, value) 0 ≤ value ≤ 127 (cnts/sample time)

value = get_final_pos(axis) get/set final position
set_final_pos(axis, value) -8388608 ≤ value ≤ 8388607 (counts)

value = get_prop_vel(axis) get/set proportional velocity
set_prop_vel(axis, value) -2048 ≤ value < 2048 (cnts/samp time)

value = get_int_vel(axis) get/set integral velocity
set_int_vel(axis, value) -128 ≤ value ≤ 127 (cnts/sample time)

 6-15

value = get_act_vel(axis) get actual velocity

value = get_ctl_mode(axis) get control mode

go_tp_ctl(axis) go trapezoidal profile control

go_pv_ctl(axis) go proportional velocity control

go_iv_ctl(axis) go integral velocity control

enter_ctl_mode(axis) enter default position control

reset(axis) software reset

init(axis) put controller in Initialize mode

Configuration Functions

value = get_status(axis) get current status
set_config(axis, value) set configuration value

set_bipolar(axis) ± command voltage format
set_unipolar(axis) + command voltage format

open_comm_loop(axis) commutator open-loop control
close_comm_loop(axis) commutator closed-loop control

check_ring(axis, ring , x, y, np) verify comm. ring parameters
check_comm(axis, ring, off, ma) verify commutator constraints

value = get_ring(axis) get/set commutator ring
set_ring(axis, value) 0 ≤ value ≤ 127

value = get_x_reg(axis) get/set commutator x register
set_x_reg(axis, value) 0 ≤ value ≤ 127

value = get_y_reg(axis) get/set commutator y register
set_y_reg(axis, value) 0 ≤ value ≤ 127

value = get_offset(axis) get/set commutator offset
set_offset(axis, value) -128 ≤ value ≤ 127

value = get_max_adv(axis) get/set max. commutator phase
set_max_adv(axis, value) advance 0 ≤ value ≤ 127

set_vel_timer(axis, value) set commutator velocity timer
 0 ≤ value ≤ 255

value = naxis() number of axis in the system
value = nboard() number of boards in the system

value = board_type(axis) type of board containing axis
value = board_num(axis) board number containing axis
value = axis_num(axis) in-board axis number

Exerciser & Library Reference

 6-16

Miscellaneous Functions

value = get_motor_com(axis) get/set motor command
set_motor_com(axis, value) 0 ≤ value ≤ FFH

value = get_pwm_com(axis) PWM command port duty cycle
set_pwm_com(axis, value) -100 ≤ value ≤ 100

align(axis) perform commutator alignment

clr_emergency(axis) clear emergency flags

home(axis, board, port, bit, iv, acc) perform homing sequence

value = read_port_a(board) read from Port A
write_port_a(board, value) write to Port A (8-bits)

value = read_port_b(board) read from Port B
write_port_b(board, value) write to Port B (8-bits)

value = read_port_c(board) read from Port C
write_port_c(board, value) write to Port C (4-bits)

read_encoder(board, sel) read sel external encoder (16 bit integer)
clr_encoder (board) clear external encoder counts

sync(board) synchronize HCTL-1100's on board

mc_init() establish system communication

6.3.2. Using the Mektronix Win32 DLL in Windows 95, 98 or NT Pro-
grams

Included in this distribution is the MCP-04 motion control dynamic link library that has been
compiled for Win32 operating systems; Windows 95/98/NT. The installation program, by
default, installs this DLL into the Windows system directory. The user can install the DLL
into any directory, but please make sure that any application using the DLL has access to it
(by having the DLL in the same directory as the application, or in one of the directories in the
PATH).

The Windows NT operating system requires an additional device driver to be installed.
Included in this distribution is the device driver, and a batch file to install it. When the batch
file is run, it will confirm that if the driver was installed correctly. Note, repeated installa-

 6-17

tions will generate a warning that the device driver has already been installed. The user can
confirm the installation in the Control Panel by running the Devices application.

6.4. EXERCISER AND PROGRAMMING INTERFACE LIBRARY
REFERENCE

This section contains the manual pages for the MCP-04 Exerciser commands and high level
language interface library routines. Entries are listed in alphabetical order.

For each entry, the description is given along with proper syntactic information on its invo-
cation for the Exerciser, C and QuickBASIC. Note that some are Exerciser only commands
and others can be invoked only through the language interface libraries. Note, the obsolete C
syntax has been updated.

Exerciser & Library Reference

 6-18

ACCEL

Purpose command acceleration

Description Get/set command acceleration of an axis for both Integral Velocity and

Trapezoidal Profile control modes. ACCEL must be set before enter-
ing one of these control modes. It ranges from 0.0 to 127.99609375
with resolution of 1/256 quadrature counts per sample time squared.
When set, the given value is rounded to the nearest possible setting.

Exerciser ? accel (short hand) ? ac
 accel = <value> ac = <value>

C/C++ float get_accel(axis) unsigned int axis;
 float set_accel(axis, value) unsigned int axis; float value;
C/C++ float get_accel(unsigned int axis);
 float set_accel(unsigned int axis, float value);

Return the actual command acceleration in effect.

See Also GO_IV_CTL, GO_TP_CTL

 6-19

ACT_POS

Purpose actual position in all control modes

Description Get/set/clear the 24-bit actual position register for an axis . The

ACT_POS register may be read while in any control mode. However,
setting/clearing the register should only be done while in Initialize
mode. The range of actual position for an axis is from -8,388,608 to
8,388,607 (quadrature counts). Limit settings will be used if the given
value is out of this range.

Exerciser ? act_pos (short hand) ? ap
 act_pos = <value> ap = <value>

C long get_act_pos(axis) unsigned int axis;
 long set_act_pos(axis, value) unsigned int axis; long value;
 long clr_act_pos(axis) unsigned int axis;

Return actual position.

Caution Clearing ACT_POS will cause the motor to increment to the current

command position while in Position Control mode. It is recommended
to enter Initialize mode before clearing the ACT_POS register.

Exerciser & Library Reference

 6-20

ACT_VEL

Purpose actual velocity in Proportional Velocity Control mode

Description Get actual velocity of an axis while in Proportional Velocity Control

mode. The range for actual velocity is from -32768 to 32767 quadra-
ture counts per sample time. The returned value does not contain a
fractional part.

Exerciser ? act_vel (short hand) ? av

C float get_act_vel(axis) unsigned int axis;

Return the actual velocity of axis.

Caution The reading of act_vel is only valid while the axis is in Proportional

Velocity Control mode.

See Also PROP_VEL, GO_PV_CTL

 6-21

ALIGN

Purpose enter Align mode

Description The Align command puts the axis in Initialize mode, clears the actual

position and sets the command position to zero before entering Align
mode. This mode automatically aligns multi-phase brushless motors
to the commutator automatically. Consult Section 4.3 for more infor-
mation regarding Align mode. After completion, the selected axis en-
ters Position Control mode.

Exerciser align (short hand) al

C align(axis) unsigned int axis;

Caution Align must be executed while axis is in Initialize mode.

See Also INIT, ACT_POS, COM_POS, CONFIG

Exerciser & Library Reference

 6-22

AXIS

Purpose current axis

Description Display or select the current global axis number, which is determined

by the order in which the board information is entered during system
setup. Each MCP-04 occupies three or four axis numbers. The exam-
ple given below shows how two boards may be configured.

 Board No. Board Type Global Axis No.

 1 MCP-03 1,2,3
 2 MCP-04 4,5,6,7

Exerciser ? axis (short hand) ? ax
 axis = <value> ax = <value>

Caution The diagnostics given for selecting an out of range axis number is

solely based on the information in the DOS environment variable
MCINIT, which must be changed by hand.

See Also NBOARD, NAXIS, AXIS_NUM, BOARD_NUM

 6-23

AXIS_NUM

Purpose determine in-board axis number

Description Returns the in-board axis number for the given global axis number.

For an axis on MCP-04, the return can be 1, 2, 3 or 4.

C unsigned int axis_num(axis) unsigned int axis;

Return in-board axis number

Caution the return depends on the DOS environment variable MCINIT. If it is

not set right, the return is not predictable.

See Also BOARD_TYPE, NBOARD

Exerciser & Library Reference

 6-24

BIPOLAR

Purpose set motor command output to bipolar mode

Description Set motor command output of the given axis to bipolar mode. This

mode provides four quadrant motor control. This is the default mode
when first powering up the MCP-04 boards.

Exerciser bipolar (short hand) bp

C set_bipolar(axis) unsigned int axis;

See Also MOTOR_COM, UNIPOLAR

 6-25

BOARD_NUM

Purpose determine board number

Description Returns the board number containing the specified axis. The axis is

given in global axis number.

C unsigned int board_num(axis) unsigned int axis;

Return board number

Caution the return depends on the DOS environment variable MCINIT. If it is

not set right, the return is not predictable.

See Also BOARD_TYPE, NBOARD

Exerciser & Library Reference

 6-26

BOARD_TYPE

Purpose determine board type

Description Returns 3 if the given axis is on a MCP-03 board, or 4 if the given axis

is on a MCP-04 board.

C unsigned int board_type(axis) unsigned int axis;

Return board type.

Caution the return depends on the DOS environment variable MCINIT. If it is

not set right, the return is not predictable.

See Also BOARD_NUM, NBOARD

 6-27

CHECK_COMM

Purpose check commutator configuration

Description Read RING, OFFSET, and MAX_ADV from the board of the given

axis and check whether the following equation holds:

 -128 ≤ 1.5⋅RING + OFFSET ± MAX_ADV ≤ 127

 In interface libraries, RING, OFFSET, and MAX_ADV are 'out' para-

meters; the corresponding values are retrieved.

Exerciser check_comm (short hand) cc

C int check_comm(axis, ring, offset, max_adv)
 unsigned int axis, *ring, *max_adv; int *offset;

Return true (non-zero) if checked OK, false (zero) otherwise.

See Also RING, OFFSET, MAX_ADV

Exerciser & Library Reference

 6-28

CHECK_RING

Purpose check commutator ring configuration

Description Read current settings of RING, X_REG, Y_REG, and NPHASE

(number of phases) of an axis. Check whether the following equation
holds:

 RING = (X_REG + Y_REG) ⋅ NPHASE

In interface libraries, RING, X_REG, Y_REG and NPHASE are 'out'
parameters; the corresponding values are retrieved.

Exerciser check_ring (short hand) cr

C int check_ring(axis, ring, x_reg, y_reg, nphase)
 unsigned int axis, *ring, *x_reg, *y_reg, *nphase;

Return TRUE (non zero) if checked OK, FALSE (zero) otherwise.

See Also RING, X_REG, Y_REG, STATUS, CONFIG

 6-29

CLOSE_COMM_LOOP

Purpose commutator closed-loop control

Description Enable the internal commutator counters of the given axis to allow

closed-loop control using the commutator. This is the normal setting
for commutating brushless motors.

Exercise close_comm_loop (short hand) cl

C close_comm_loop(axis) unsigned int axis;

See Also OPEN_COMM_LOOP

Exerciser & Library Reference

 6-30

CLR_EMERGENCY

Purpose clear STOP and/or LIMIT flags

Description Clear STOP and/or LIMIT flags set by external emergency opto-

coupler trigger inputs for the given axis.

Exerciser clr_emergency (short hand) ce

C clr_emergency(axis) unsigned int axis;

See Also STATUS, CONFIG

 6-31

COM_POS

Purpose command position in Position Control mode

Description Get/set command position in Position Control mode for the given axis.

The 24-bit COM_POS register specifies the desired position. While in
Position Control, changing the COM_POS will cause the motor to
immediately move to the new commanded position without profiling.
The range of command position for an axis is from -8,388,607 to
8,388,607 (quadrature counts). Limit settings will be used if the given
value is out of this range.

Exerciser ? com_pos (short hand) ? cm
 com_pos = <value> cm = <value>

C long get_com_pos(axis) unsigned int axis;
 long set_com_pos(axis, value)
 unsigned int axis; long value;

Return the real command position setting in effect.

See Also ACT_POS, ENTER_CTL_MODE

Exerciser & Library Reference

 6-32

CONFIG

Purpose configure PWM sign reversal, commutator phase and commutator
count format.

Description In Exerciser, user is prompted to answer a number of questions on

PWM sign reversal, number of commutator phases and commutator
count format. The interface library requires an encoded integer rep-
resenting the same information. The encoding is specified as follows:

 bit 0: 0 = PWM sign reversal off
 1 = PWM sign reversal on
 bit 1: 0 = commutator 3 phase
 1 = commutator 4 phase
 bit 2: 0 = commutator count quad.
 1 = commutator count full
 bit 3: always 0

 The settings can be read back, along with other information, with

command STATUS. The consistency of commutator settings may be
checked by calling CHECK_RING.

Exerciser config (short hand) cf

C unsigned char set_config(axis, value)
 unsigned int axis; unsigned char value;

Return encoding of the actual configuration in effect.

See Also STATUS, RING, X_REG, Y_REG, CHECK_RING

 6-33

CTL_MODE

Purpose get current control mode

Description Returns the current control mode for the specified axis. The following

encoding is used:

 0: INVALID invalid control mode
 1: INIT initialization/idle mode
 2: CTL_MODE position control
 3: PV_CTL proportional velocity control
 4: IV_CTL integral velocity control
 5: TP_CTL trapezoidal profile control

 The control mode for an axis is derived from the reading from the

FLAG register of HCTL-1100.

Exerciser ? ctl_mode short hand: ? md

 If ECHO is set to short, the encoded control mode will be displayed.

If ECHO is set to long, English description will be given.

C unsigned int get_ctl_mode(axis) unsigned int axis;

Return encoding of control mode.

See Also INIT, RESET, GO_IV_CTL, GO_TP_CTL, GO_PV_CTL,

ENTER_CTL_MODE

Exerciser & Library Reference

 6-34

ECHO

Purpose set echo mode for the Exerciser

Description The echo mode to the screen while in the Exerciser may be either off,

short or long. Off completely suppresses any echo whereas short and
long allow command responses to be displayed on the screen. Short
echoes the command briefly (usually the value of a variable involved
in the command). Long echoes detailed information about each com-
mand executed. The default echo mode is short.

Exerciser echo off (short hand) ec off
 echo short ec short
 echo long ec long

Caution Echo mode is a global concept in the Exerciser. Altering it in a com-

mand file may affect the echo format upon returning to its caller.

Example . ? gain echo is short

16.00
. echo off set echo to off
. ? gain
. echo long set echo to long
. ? gain
gain (axis 1): 16.00

 6-35

ENTER_CTL_MODE

Purpose enter Position Control mode

Description Enter Position Control mode for the given axis. COM_POS is also set

to the current actual position which will cause the axis to hold the cur-
rent position until a new command position is given or another mode is
entered. All other control modes must be entered from Position Con-
trol mode.

Exerciser enter_ctl_mode (short hand) cm

C enter_ctl_mode(axis) unsigned int axis;

Caution GO-TP_CTL, GO_PV_CTL and GO_IV_CTL are not effective unless

the axis is currently in Position Control mode.

See Also COM_POS, ACT_POS, CTL_MODE

Exerciser & Library Reference

 6-36

EXECUTE

Purpose execute a command file while in the Exerciser

Description Exerciser commands stored in a text file may be executed as if they

were typed from the keyboard in the Exerciser. The execution of
command files may be nested and/or recursive. The optional <itera-
tion> specifies the number of iterations the file will be executed. If
omitted, the commands in <command file> are executed only once.

Exerciser execute <command file> [<iteration>]
 (short hand) ex <command file> [<iteration>]

 6-37

EXT_DAC

Purpose set external digital to analog converter

Description Set external 8-bit digital to analog converter (DAC) to a hexadecimal

value on a MCP-04 board. Depending on how the converter is con-
figured, (either 0-10 V or ±10 V operation) the value sent to the con-
verter represents its output range. For example, a value of 80H will
output 5 volts for 0-10 V operation or 0 volts for ±10 V operation.

Exerciser ext_dac = <value> (short hand) da = <value>

 where <value> is given in hex (00 to FF)

C unsigned char write_ext_dac(board, value)

unsigned int board; unsigned char value;

Return the setting in effect.

Exerciser & Library Reference

 6-38

ENCODER

Purpose read/clear external position encoder

Description Read or clear one of four selected external encoders connected to a

MCP-04 board. The four extenal encoders are multiplexed to one 16-
bit incremental encoder decoder circuit. Writing to an external encod-
er is equivalent to using the clr_encoder() function.

Exerciser ? ext_encoder1 (short hand) ? e1, e2, e3, e4
 encoder1 = <value> e1 = 0

C int read_encoder1(board, sel) int board, int sel;
 int clr_encoder(board) int board;

Return 16 bit signed external encoder value.

 6-39

FINAL_POS

Purpose final position for Trapezoidal Profile Control mode

Description Get/set final position for Trapezoidal Profile Control mode for the

given axis. FINAL_POS must be set before issuing the GO_TP_CTL
command. The range of its value is from -8,388,608 to 8,388,607 (qu-
adrature counts). If out of range, one of the limit settings will apply.

Exerciser ? final_pos (short hand) ? fp
 final_pos = <value> fp = <value>

C long get_final_pos(axis) unsigned int axis;
 long set_final_pos(axis, value)
 unsigned int axis; long value;

Return the actual FINAL_POS setting in effect.

See Also GO_TP_CTL, ACCEL, MAX_VEL

Exerciser & Library Reference

 6-40

GAIN

Purpose filter parameter gain

Description Get/set filter parameter gain for axis which may range from 0.0 to

63.75 with resolution 0.25. GAIN is related to the gain register, K, of
the HCTL-1100 by the equation: GAIN = K/4. Value is rounded to the
nearest possible setting when it is set. The filter parameter gain is uti-
lized in all control modes.

Exercise ? gain (short hand) ? gn
 gain = <value> gn = <value>

C float get_gain(axis) unsigned int axis;
 float set_gain(axis, value) unsigned int axis; float value;

Return the actual gain value in effect.

See also POLE, ZERO, SAMPLE_FREQ

 6-41

GO_IV_CTL

Purpose enter Integral Velocity Control mode

Description Enter Integral Velocity Control mode for the axis. In Integral Velocity

Control mode, the system is actually a position control system and
therefore the complete dynamic compensation filter is used. The axis
starts to move according to pre-commanded INT_VEL and ACCEL.
The external STOP signal (indicated by Bit 6 of the STATUS register)
is effective only in this mode and causes the motor to perform a con-
trolled stop by decelerating at the specified command acceleration.
This flag may be cleared by using CLR_EMERGENCY once the Stop
trigger is removed.

Exerciser go_iv_ctl (short hand) gi

C go_iv_ctl(axis) unsigned int axis;

See Also INT_VEL, ACCEL, STATUS, CLR_EMERGENCY

Exerciser & Library Reference

 6-42

GO_PV_CTL

Purpose enter Proportional Velocity Control mode

Description Enter Proportional Velocity Control mode for the given axis. In Pro-

portional Velocity Control, only the GAIN is used for compensation
(POLE and ZERO are not used). The axis moves according to current
PROP_VEL setting. The actual velocity may be read back by com-
mand ACT_VEL.

Exerciser go_pv_ctl (short hand) gv

C go_pv_ctl(axis) unsigned int axis;

See Also PROP_VEL, ACT_VEL

 6-43

GO_TP_CTL

Purpose enter Trapezoidal Profile Control mode

Description Enter Trapezoidal Profile Control mode for the specified axis. The

internal profile generator produces a position profile using the present
Command Position as the starting point and the Final Position as the
end point according to the preset ACCEL and MAX_VEL. While an
axis is profiling, no register of that controller may be set. However,
the registers may still be read during Trapezoidal Profile Control.

Exerciser go_tp_ctl (short hand) gt

C go_tp_ctl(axis) unsigned int axis;

Caution The execution of certain commands may not be effective if they are

issued while the axis is profiling in Trapezoidal Profile Control mode.

See also FINAL_POS, MAX_VEL, ACCEL, STATUS

Exerciser & Library Reference

 6-44

HELP

Purpose Exerciser on-line help facility

Description This is the Exerciser on-line help facility. If a topic name is provided,

it shows the manual page of that topic. Otherwise, a series of carefully
designed menus lead to the manual pages one wants to see.

Exerciser help (short hand) hp
 help <topic> hp <topic>

Caution The file MCP.HLP must be present in the current directory in order to

get on-line help while using the Exerciser.

 6-45

HOME

Purpose perform homing sequence

Description The function uses the specified port and bit on the given board to di-

rect the homing sequence of the given axis. The homing sequence
consists of two stages. In the first stage, the axis moves in the di-
rection specified by the control bit (0 = positive and 1 = negative) with
given integral velocity ivel and acceleration accel. The first stage ends
as soon as the control bit changes state. In the second stage, the axis
moves in the opposite direction with one fifth of the given ivel and
stops when the control bits changes again. At the end of this homing
sequence, the ACT_POS register is cleared and the axis is in Position
Control mode. The following explains each parameter in detail:

axis: the current axis is used for the Exerciser. Otherwise, it is the
global axis number.

board: board number that contains the port used in homing.

port: port identification on board specified. In the Exerciser, it can be
either a, b or c. In the language interface libraries, use 1 or Port A, 2
for Port B and 3 for Port C.

bit: The bit number of the port to be employed in the homing se-
quence.

ivel: initial integral velocity used in the first stage of the homing
process. If omitted in the Exerciser, the default is 5 cnts/sample time.

accel: acceleration used in the homing process. If omitted in the Ex-
erciser, the default is 0.01 cnts/sample time2.

Exerciser home <board> <port> <bit> [<ivel> <accel>]
 (short hand) hm <board> <port> <bit> [<ivel> <accel>]

Exerciser & Library Reference

 6-46

C home(axis, board, port, bit, ivel, accel)
 unsigned int axis, board, port, bit; float ivel, accel;

 6-47

INIT

Purpose enter Initialize mode

Description Enter Initialize mode for the axis. The following conditions occur:

 • bit 5 of STATUS register is set to 1.
 • PWM_COM is set to 0 (zero duty cycle).
 • MOTOR_COM is set to 80H (0 volts).
 • previously sampled data in the digital filter is cleared.

Exerciser init (short hand) in

C init (axis) unsigned int axis;

See Also RESET, STATUS

Exerciser & Library Reference

 6-48

INT_VEL

Purpose Command velocity in Integral Velocity Mode.

Description Get/set command velocity in Integral Velocity Control mode for the

axis. INT_VEL must be set before issuing the GO_IV_CTL com-
mand. The range of value is from -128 to 127 with a resolution of one
quadrature count per sample time. When set, value is rounded to the
nearest possible setting.

Exerciser ? int_vel (short hand) ? iv
 int_vel = <value> iv = <value>

C float get_int_vel(axis) unsigned int axis;
 float set_int_vel(axis, value) unsigned int axis; float value;

Return the actual command velocity in effect.

Caution The maximum step change in value must not exceed ±127 decimal.

See Also GO_IV_CTL, ACCEL

 6-49

MAX_ADV

Purpose commutator maximum phase advance

Description Get/set commutator maximum phase advance of the given axis, which

ranges from 0 to 127. A value greater than 127 will be limited. Con-
sult Section 4.3 for other constraints regarding the commutator maxi-
mum phase advance register.

Exerciser ? max_adv (short hand) ? ma
 max_adv = <value> ma = <value>

C unsigned int get_max_adv(axis) unsigned int axis;
 unsigned int set_max_adv(axis, value)
 unsigned int axis, value;

Return the effective maximum velocity.

See Also CHECK_COMM, VEL_TIMER, RING

Exerciser & Library Reference

 6-50

MAX_VEL

Purpose maximum velocity in Trapezoidal Profile Control mode

Description Get/set maximum velocity in Trapezoidal Profile Control mode for the

given axis. MAX_VEL must be set before issuing the GO_TP_CTL
command. The range of value is from 0 to 127 with a resolution of
one quadrature count per sample time. When set, value is rounded to
the nearest possible setting.

Exerciser ? max_vel (short hand) ? mv
 max_vel = <value> mv = <value>

C float get_max_vel(axis) unsigned int axis;
 float set_max_vel(axis, value) unsigned int axis; float value;

Return the actual maximum velocity setting in effect.

See Also GO_TP_CTL, ACCEL, FINAL_POS

 6-51

MC_INIT

Purpose establish communication between PC and MCP-04 boards

Description MCINIT must be called before any other functions in the interface

libraries. It looks for DOS environment variable MCINIT and uses it
to build a table that translates global axis numbers to their base ad-
dresses. This table will be used by the successive calls that refer axes
by their global axis numbers.

 The required DOS environment variable MCINIT may be established

by running MCINIT.BAT which is generated by the Setup program
(SETUP.EXE) on the distribution disk. If the environment variable
can not be found, MC_INIT assumes that there is only one MCP-04
board whose starting address is 3E0H.

C int mc_init()

Return In C, it returns the number of axes used in the system, or -1 if an error

occurred.

Caution The result of calling a routine in any interface library is unpredictable

if MC_INIT is omitted.

Exerciser & Library Reference

 6-52

MONITOR

Purpose monitor system status on screen while using Exerciser

Description Monitor displays critical system status and parameters on the screen

while still allowing the user to issue Exerciser commands. It displays
control mode, status, command and actual positions, final position, and
tracking error for each axis in the system. It also displays I/O port ac-
tivities for each MCP-04 board if the ports are configured. See Sec-
tion 6.2.2.9. for a detailed description.

Exerciser monitor on (short hand) mo on
 monitor off mo off

 6-53

MOTOR_COM

Purpose motor command register

Description Get/set motor command register for the given axis, which ranges from

00H to FFH. A Value greater than FFH is limited to FFH. Setting
MOTOR_COM is only effective while in Initialize mode. The 8-bit
motor command is output to a digital to analog converter whose range
is from -10 V (00H) to +10 V (FFH). The default setting is 80H (0V)
when entering Initialize mode.

Exerciser ? motor_com (short hand) ? mc
 motor_com = <value> mc = <value>

C unsigned int get_motor_com(axis)
 unsigned int axis;

 unsigned int set_motor_com(axis, value)
 unsigned int axis, value;

Return the motor command register value in effect.

Caution No warning is given for a setting while the current axis is not in ini-

tialize mode, even though the setting has no effect.

See Also ENTER_CTL_MODE, INIT

Exerciser & Library Reference

 6-54

NAXIS

Purpose total number of axes

Description returns the total number of axes in the system

C unsigned int naxis()

Return the total number of axes in the system.

Caution the return depends on the DOS environment variable MCINIT. If it is

not set right, the return is not predictable.

See Also NBOARD, BOARD_TYPE, BOARD_NUM.

 6-55

NBOARD

Purpose total number of boards in the system

Description returns the total number of MCP-04 boards in the system

C unsigned int nboard()

Return the total number of MCP-04 boards.

Caution the return depends on the DOS environment variable MCINIT. If it is

not set right, the return is not predictable.

See Also NAXIS, BOARD_TYPE, BOARD_NUM.

Exerciser & Library Reference

 6-56

OFFSET

Purpose commutator offset register

Description Get/set commutator offset of the given axis, which ranges from -128 to

127. A value out of this range will be limited. Consult Section 4.3 for
other constraints regarding the commutator offset register.

Exerciser ? offset (short hand) ? os
 offset = <value> os = <value>

C int get_offset(axis) unsigned int axis;
 int set_offset(axis, value) unsigned int axis; int value;

See Also CHECK_COMM, RING, MAX_ADV, VEL_TIMER

 6-57

OPEN_COMM_LOOP

Purpose commutator open-loop control

Description Inhibit the internal commutator counters of the given axis to allow

open-loop stepping of a motor using the commutator. This feature as-
sists in setting up the alignment of the position encoder to the motor
phases. This configuration is not to be used for running stepper mo-
tors in open-loop control.

Exerciser open_comm_loop (short hand) ol

C open_comm_loop(axis) unsigned int axis;

See Also CLOSE_COMM_LOOP, ALIGN

Exerciser & Library Reference

 6-58

POLE

Purpose filter parameter Pole

Description Get/set filter parameter POLE for the given axis. It ranges from

-0.9906935 to 0.0 with resolution of 1/256. In control terms, this plac-
es the POLE within the unit circle of the z-plane. When set, -|value| is
rounded to the nearest possible setting. The filter parameter pole is
utilized in all control modes except Proportional Velocity Control
mode. POLE is related to the pole register B by the equation: POLE
= B/256.

Exerciser ? pole (short hand) ? pl
 pole = < value> pl = <value>

C float get_pole(axis) unsigned int axis;
 float set_pole(axis, value) unsigned int axis; float value;

Return the actual pole value in effect.

Caution If 0 < value < 1, then -value will be used.

See also GAIN, ZERO, SAMPLE_FREQ

 6-59

PORT_A

Purpose 8-bit user configurable I/O Port A

Description Read from/write into Port A of the given board. Reading/writing

values may range from 00H to FFH. When Port A is connected to an
external encoder, it must be configured as an input port. In this case,
the position can be read from external encoder by calling
EXT_ENCODER. Port A is accessible at connector J-3 on a MCP-04
board after configuring as either on input or output port.

Exerciser ? port_a (short hand) ? pa
 port_a = <value> pa = <value>

C unsigned char read_port_a(board)
 unsigned int board;
 unsigned char write_port_a(board, value)
 unsigned int board; unsigned char value;

Return the value retrieved from the port.

Caution Read/write values areeffective only if Port A is configured currently as

input or output port, respectively, using the CONFIG_PORTS com-
mand. PORT_A is not applicable to MC-01 boards.

See Also EXT_ENCODER

Exerciser & Library Reference

 6-60

PORT_B

Purpose 8-bit user configurable I/O Port B

Description Read from/write into Port B of board . Read/write values may range

from 00H to FFH. Port B is accessible at connector J-3 on a MCP-04
board after configuring as either on input or output port.

Exerciser ? port_b (short hand) ? pb
 port_b = <value> pb = <value>

C unsigned char read_port_b(board)
 unsigned int board;
 unsigned char write_port_b(board, value)
 unsigned int board; unsigned char value;

Return the value retrieved from the port.

 6-61

PORT_C

Purpose user configurable lower 4 bits of Port C

Description Read from/write into 4-bit Port C on the given board. Read/write

values may range from 0H to FH. Port C is accessible at connector J-3
on a MCP-04 board after configuring as either on input or output port.

Exerciser ? port_c (short hand) ? pc
 port_c = <value> pc = <value>

C unsigned char read_port_c(board)
 unsigned int board;
 unsigned char write_port_c(board, value)
 unsigned int board; unsigned char value;

Return the effective value of the lower 4 bits of Port C.

Exerciser & Library Reference

 6-62

PROP_VEL

Purpose command velocity in Proportional Velocity Control mode

Description Get/set command velocity in Proportional Velocity Control mode for

the given axis. The PROP_VEL should be set before issuing the
GO_PV_CTL command. The range of value is from -2048.0 to
2047.9375 with a resolution of 1/16 quadrature counts per sample
time. When set, the given value is rounded to the nearest possible set-
ting.

Exerciser ? prop_vel (short hand) ? pv
 prop_vel = <value> pv = <value>

C float get_prop_vel(axis) unsigned int axis;
 float set_prop_vel(axis, value)
 unsigned int axis; float value;

Return the actual command velocity in effect.

See Also GO_PV_CTL, ACT_VEL

 6-63

PWM_COM

Purpose PWM duty cycle command register

Description Get/set PWM duty cycle command register of an axis, which effects

the PWM Pulse and Direction outputs while in Initialize mode. The
range is limited to ±100 with resolution of 1. For example, a com-
mand of 50 corresponds to a 50% drive signal in the positive direction.
The modulation frequency of the PWM Pulse signal is fixed at either
20 kHz or 10 kHz with a board clock setting of 2 MHz or 1 MHz re-
spectively.

Exerciser ? pwm_com (short hand) ? pw
 pwm_com = <value> pw = <value>

C int get_pwm_com(axis) unsigned int axis;
 int set_pwm_com(axis, value)

unsigned int axis; int value;

Return the value of PWM command register in effect.

Caution No warning is given for a setting while the current axis is not in ini-

tialize mode, even though the setting has no effect.

See Also INIT

Exerciser & Library Reference

 6-64

QUIT

Purpose quit Exerciser to DOS

Description QUIT stops execution of the command file being interpreted or exits to

DOS if at the Exerciser program level. All setting on the MCP-04
boards will remain in effect unless power is turned off.

Exerciser quit (short hand) qt

 6-65

REPEAT

Purpose repeats the last executed Exerciser command

Description !! repeats the execution of the last command issued in the Exerciser.

The same effect may be achieved by using the function key [F3]. The
last command is local to the command file being interpreted. For ex-
ample,

 . execute move.cmd
 .
 (execution of commands in move.cmd)
 .
 . !!
 execute move.cmd

 Note that !! did not repeat the last command in move.cmd.

Exerciser repeat (short hand) !!
 [F3]

Exerciser & Library Reference

 6-66

RESET

Purpose software reset

Description Execute a software reset which performs the following on the given

axis:

• digital filter parameters are preset to GAIN = 16.00, ZERO =
0.89453125, POLE = -0.25.

• Sample frequency is set to 1,923.0 Hz if CLOCK_FREQ is 2 MHz
or 961.5 Hz if CLOCK_FREQ is 1 MHz.

• status register is cleared.
• actual position is cleared to zero.
• enter Initialize mode.

Exerciser reset (short hand) rs

C reset (axis) unsigned int axis;

See Also INIT

 6-67

RING

Purpose commutator ring

Description Get/set commutator ring register for an axis, which ranges from 0 to

127. A value greater than 127 will be limited. Consult Section 4.3 for
other constraints regarding the commutator Ring register.

Exerciser ? ring (short hand) ? rg
 ring = <value> rg = <value>

C unsigned int get_ring(axis) unsigned int axis;
 unsigned int set_ring(axis, value)
 unsigned int axis, value;

See Also CHECK_RING, CHECK_COMM, X_REG, Y_REG

Exerciser & Library Reference

 6-68

RUN

Purpose issuing DOS command in Exerciser

Description Temporarily escape to DOS and issue a DOS command in Exerciser.

The given DOS command will be executed as if it were invoked di-
rectly under the DOS shell. Up to 10 parameters can be passed to the
program through the command line.

Exerciser run <DOS command> (short hand) ! <DOS command>

Caution Be careful with the DOS command you chose to issue.

 6-69

SAMPLE_FREQ

Purpose sampling frequency

Description Set sampling frequency for the given axis. User specified sample

frequency should be given according to the following table, where
mode should be 1 if integral velocity control or trapezoidal profile
control is used for the axis or 0 otherwise.

 clock freq mode min max
 1 MHz 0 244.125 7,812.50
 1 MHz 1 244.125 3,906.25
 2 MHz 0 488.250 7,812.50
 2 MHz 1 488.250 15,625.00

 Given sample frequency (in Hz) is rounded to the nearest possible

setting. Sample frequency (SF) is related to the sample timer register
(T) by the following equation:

 SF = 62500 * CF / (T+1)
 where CF is 1 for 1 MHZ clock or 2 for 2 MHZ clock.

Exerciser sample_freq = <value> (short hand) sf = <value>

C float set_sample_freq(axis, value, mode)
 unsigned int axis, mode; float value;

Return the actual sampling frequency in effect.

Caution No warning is given for value higher than 7812.5 Hz in Trapezoidal

Profile Control or Integral Velocity Control modes.

See Also GAIN, ZERO, POLE, SAMPLE_TIMER

Exerciser & Library Reference

 6-70

SAMPLE_TIMER

Purpose sample timer register

Description Read the current value of the sample timer register, which is a down-

ward counter. The counter's maximal value is determined by setting
sample frequency (see SAMPLE_FREQ). The reading of the sample
timer register may fall anywhere between this maximal value and 0.
Application routines written in C and BASIC may use this command
to access this register to perform certain operations, such as setting
command position or synchronization between axes during the same
sample period. The maximal value (T), for the sample timer register is
related to sample frequency (SF) by

 T = 62500 ⎝⎜
⎛

⎠⎟
⎞CF

SF - 0.5

 where CF is 1 for 1 MHZ clock; 2 for 2 MHZ clock.

C float get_sample_timer(axis)
 unsigned int axis,

Return current value of the sample timer register

See Also SAMPLE_FREQ

 6-71

STATUS

Purpose status register

Description Get current value of the status register of an axis. The lower four bits

may be set by command CONFIG.

Exercise ? status (short hand) ? st

C unsigned char get_status(axis) unsigned int axis;

Return The return value is given in the following format:

 bit 0: 0 = PWM sign reversal off

 1 = PWM sign reversal on

 bit 1: 0 = commutator 3 phase
 1 = commutator 4 phase

 bit 2: 0 = commutator count quad.
 1 = commutator count full

 bit 3: always 0

 bit 4: 0 = not in tp control
 1 = in tp control

 bit 5: 0 = not in initialize mode
 1 = in initialize mode

 bit 6: 0 = stop triggered
 1 = stop not triggered

 bit 7: 0 = limit triggered
 1 = limit not triggered

See Also CONFIG, CLR_EMERGENCY

Exerciser & Library Reference

 6-72

SYNC

Purpose provides a pulse for synchronizing sample timers on multiple axes

Description Generate a negative strobe on the sync pin of HCTL-1100s on a MCP-

04 board. The synchronization among axes is useful only if involved
axes are set to the same sample frequency.

 SYNC is effective only if the axes are in Initialization mode.

Exerciser sync (short hand) sy

C sync(board)

Caution The user must first configure the I/O ports by using the CON-

FIG_PORTS command.

See Also CONFIG_PORTS

 6-73

TUNE_FILTER

Purpose tune filter parameters experimentally

Description This Exerciser command tunes filter parameters (GAIN, POLE, ZERO

and SAMPLE_FREQ) of the current axis experimentally. The com-
mand uses position control to move the axis forward and backward be-
tween -<incr> and +<incr>, where <incr> may be optionally specified
or be default to 64, until [F0] is hit. The filter parameters may be
changed "on the fly" using function keys [F1]-[F8].

 If the current axis is on a MCP-04 board, the actual position is con-

verted via external dac to its Monitor port so that the step response can
be observed with an oscilloscope at TP4 If the current axis is on a
MC-01 board and a MCP-04 is also present at your system, the
EXT_DAC of the first MCP-04 board will be used for this purpose.

Exerciser tune_filter [<incr>] (short hand) tf [<inc>]

See Also CONFIG_PORTS, GAIN, POLE, ZERO, SAMPLE_FREQ

Exerciser & Library Reference

 6-74

UNIPOLAR

Purpose set motor command output to unipolar mode

Description Set motor command output of an axis into unipolar mode. This mode

provides only positive voltage command signals (two quadrant motor
control).

Exerciser unipolar (short hand) up

C set_unipolar(axis) unsigned int axis;

Caution Putting an axis in unipolar mode may cause the motor to "run away" if

your system is expecting a bipolar voltage command output.

See Also MOTOR_COM, BIPOLAR

 6-75

VEL_TIMER

Purpose commutator velocity timer

Description Set commutator velocity timer for an axis to a value in the range from

0 to 255. A given value greater than 255 is limited. The data specifies
the amount of phase advance at a given velocity. Consult Section 4.3
for more information regarding the VEL_TIMER register.

Exerciser vel_timer = <value> (short hand) vt = <value>

C unsigned int set_vel_timer(axis,value)
 unsigned int axis, value;

See Also MAX_ADV, OFFSET, Y_REG, X_REG, RING

Exerciser & Library Reference

 6-76

WAIT

Purpose wait for the specified time in Exerciser

Description Wait for the specified time in PC's clock 'ticks'. If no argument is

provided, suspension is indefinite until any key is hit. Otherwise, the
Exerciser prompt comes back in specified 'ticks'; each tick is about 55
ms.

Exerciser wait [<ticks>] (short hand) wt [<ticks>]

 6-77

X_REG

Purpose commutator X register

Description Get/set commutator X register for an axis to a value in the range from

0 to 127. A given value greater than 127 will be limited. Consult Sec-
tion 4.3 for other constraints regarding the X register.

Exerciser ? x_reg (short hand) ? xr
 x_reg = <value> xr = <value>

C unsigned char get_x_reg(axis) unsigned int axis;

unsigned int set_x_reg(axis, value)
 unsigned int axis, value;

Return the effective X register value.

See Also CHECK_RING, Y_REG, CONFIG

Exerciser & Library Reference

 6-78

Y_REG

Purpose commutator Y-phase register

Description Get/set commutator Y-phase register for an axis to a value in the range

from 0 to 127. A given value greater than 127 is limited. Consult Sec-
tion 4.3 for other constraints regarding the commutator Y-phase regis-
ter.

Exerciser ? y_reg (short hand) ? yr
 y_reg = <value> yr = <value>

C unsigned int get_y_reg(axis) unsigned int axis;
 unsigned int set_y_reg(axis, value)

unsigned int axis, value;

Return effective Y-phase register value.

See Also CHECK_RING, X_REG, CONFIG

 6-79

ZERO

Purpose filter parameter zero

Description Get/set filter parameter Zero for an axis. It ranges from 0.0 to

0.99069375 with resolution of 1/256. In control terms, this places the
filter zero within the unit circle of the z-plane. When set, value is
rounded to the nearest possible setting. The filter parameter ZERO is
utilized in all control modes except Proportional Velocity Control
mode.

Exerciser ? zero (short hand) ? zr
 zero = <value> zr = <value>

C float get_zero(axis) unsigned int axis;

float set_zero(axis, value) unsigned int axis; float value;

Return the actual zero value in effect.

Caution If -1 < value < 0, then -value will be used.

See Also GAIN, POLE, SAMPLE_FREQ

	DESCRIPTION
	1.1. MANUAL ORGANIZATION
	1.2. OVERVIEW OF MCP-04
	1.2.1. Motion Controller Features
	1.2.2. Motion Controller Specifications

	INSTALLATION
	2.1. SYSTEM REQUIREMENTS
	2.2. SOFTWARE INSTALLATION
	2.2.1. Distribution Software
	2.2.2. Installing Exerciser and Library Software

	2.3. HARDWARE INSTALLATION
	2.3.1. Configuring the MCP-04 Board
	2.3.2. MCP-04 Connector Pin-outs
	2.3.3. Interface to I/O Module
	2.3.4. Interface to External Devices
	Quadrature Encoder Interface
	Position Encoders
	Motors and Drivers
	Digital to Analog Converter
	Axis Limit Inputs
	Cable Preparation
	External Inputs/Outputs
	Homing Inputs
	Limit Inputs

	SYSTEM CHECKOUT
	3.1. VERIFY COMMUNICATION
	3.1.1 Check Board Utility
	3.1.2 Command Exerciser Utility

	3.2. CLOSED-LOOP CONTROL
	3.2.1. Establishing the Control Loop
	3.2.2. Adjusting the Digital Compensator

	3.3. EXERCISING THE MCP-04 BOARDS
	3.3.1. Control Modes
	Position Control Mode
	Proportional Velocity Control Mode
	Integral Velocity Control Mode
	Trapezoidal Profile Control Mode

	3.3.2. External Inputs/Outputs Ports
	3.3.3. External Encoder
	3.3.4. Digital to Analog Converter
	3.3.5. Limit

	BOARD OPERATION
	4.1. ADDRESS COMMUNICATIONS
	4.1.1. Address Decoding
	4.1.2. Register Programming

	4.2. MOTION CONTROL SETTINGS
	4.2.1. Digital Compensator
	4.2.2. Flag and Program Mode Registers
	4.2.3. Emergency Flags and Status
	4.2.4. Control Mode Operation
	Reset and Initialization
	Align Mode
	Position Control
	Proportional Velocity Control
	Integral Velocity Control
	Trapezoidal Profile Control

	4.3. COMMUTATOR
	4.3.1. Configuration Registers
	4.3.2. Commutator Constraints

	SYSTEM MODELING AND TUNING
	5.1. MODELING THE SYSTEM COMPONENTS
	5.1.1. Zero Order Hold Transfer Function
	5.1.2. DAC Transfer Function
	5.1.3. Amplifier Transfer Function
	5.1.4. DC Motor Transfer Function
	DC Motors Driven by Voltage Source Amplifiers
	DC Motors Driven by Current Source Amplifiers

	5.1.5. Encoder Transfer Function

	5.2. TUNING THE DIGITAL COMPENSATION FILTER
	5.2.1. Determination of the Gain and Phase Margin
	5.2.2. Modification of the Open Loop Transfer Function

	MCP-04 SOFTWARE
	6.1. SOFTWARE OPERATION
	6.1.1. Limiting and Rounding Conventions
	6.1.2. Board Numbers and Global Axis Numbers
	6.1.3. Initialization

	6.2. MCP-04 EXERCISER
	6.2.1. Invocation
	6.2.2. Usage
	Commands
	Current Axis
	On-line Help
	Echo Mode
	Command File
	Run (DOS Escape)
	Repeat (!!)
	Short Hand
	Monitor

	6.2.3. List of Exerciser Commands

	6.3. MCP-04 PROGRAMMING INTERFACE LIBRARIES
	6.3.1. Programming in C
	Programming Hints
	List of Functions

	6.3.2. Using the Mektronix Win32 DLL in Windows 95, 98 or NT Programs

	6.4. EXERCISER AND PROGRAMMING INTERFACE LIBRARY REFERENCE

